Properties

Label 245.2.t
Level $245$
Weight $2$
Character orbit 245.t
Rep. character $\chi_{245}(4,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $312$
Newform subspaces $1$
Sturm bound $56$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 245.t (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 245 \)
Character field: \(\Q(\zeta_{42})\)
Newform subspaces: \( 1 \)
Sturm bound: \(56\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(245, [\chi])\).

Total New Old
Modular forms 360 360 0
Cusp forms 312 312 0
Eisenstein series 48 48 0

Trace form

\( 312 q - 50 q^{4} - 12 q^{5} - 10 q^{6} - 64 q^{9} - 10 q^{10} - 40 q^{11} - 36 q^{14} - 6 q^{16} + 30 q^{19} - 46 q^{20} - 18 q^{21} - 34 q^{24} - 18 q^{25} - 10 q^{26} - 46 q^{29} + q^{30} - 94 q^{31}+ \cdots - 168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(245, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
245.2.t.a 245.t 245.t $312$ $1.956$ None 245.2.t.a \(0\) \(0\) \(-12\) \(0\) $\mathrm{SU}(2)[C_{42}]$