Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M4(Γ0(245)).
|
Total |
New |
Old |
Modular forms
| 92 |
41 |
51 |
Cusp forms
| 76 |
41 |
35 |
Eisenstein series
| 16 |
0 |
16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
5 | 7 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 26 | 11 | 15 | | 22 | 11 | 11 | | 4 | 0 | 4 |
+ | − | − | | 21 | 9 | 12 | | 17 | 9 | 8 | | 4 | 0 | 4 |
− | + | − | | 22 | 9 | 13 | | 18 | 9 | 9 | | 4 | 0 | 4 |
− | − | + | | 23 | 12 | 11 | | 19 | 12 | 7 | | 4 | 0 | 4 |
Plus space | + | | 49 | 23 | 26 | | 41 | 23 | 18 | | 8 | 0 | 8 |
Minus space | − | | 43 | 18 | 25 | | 35 | 18 | 17 | | 8 | 0 | 8 |
Decomposition of S4new(Γ0(245)) into newform subspaces
Decomposition of S4old(Γ0(245)) into lower level spaces