Properties

Label 245.4.a
Level 245245
Weight 44
Character orbit 245.a
Rep. character χ245(1,)\chi_{245}(1,\cdot)
Character field Q\Q
Dimension 4141
Newform subspaces 1616
Sturm bound 112112
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 245=572 245 = 5 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 245.a (trivial)
Character field: Q\Q
Newform subspaces: 16 16
Sturm bound: 112112
Trace bound: 33
Distinguishing TpT_p: 22, 33

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(245))M_{4}(\Gamma_0(245)).

Total New Old
Modular forms 92 41 51
Cusp forms 76 41 35
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

5577FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++262611111515222211111111440044
++--212199121217179988440044
-++-222299131318189999440044
--++2323121211111919121277440044
Plus space++494923232626414123231818880088
Minus space-434318182525353518181717880088

Trace form

41q+2q3+148q4+5q536q8+341q9+40q10+28q11+188q12+22q1350q15+772q16+170q17+356q18344q19+40q2032q22238q23+7332q99+O(q100) 41 q + 2 q^{3} + 148 q^{4} + 5 q^{5} - 36 q^{8} + 341 q^{9} + 40 q^{10} + 28 q^{11} + 188 q^{12} + 22 q^{13} - 50 q^{15} + 772 q^{16} + 170 q^{17} + 356 q^{18} - 344 q^{19} + 40 q^{20} - 32 q^{22} - 238 q^{23}+ \cdots - 7332 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(245))S_{4}^{\mathrm{new}}(\Gamma_0(245)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 5 7
245.4.a.a 245.a 1.a 11 14.45514.455 Q\Q None 5.4.a.a 4-4 2-2 55 00 - - SU(2)\mathrm{SU}(2) q4q22q3+8q4+5q5+8q6+q-4q^{2}-2q^{3}+8q^{4}+5q^{5}+8q^{6}+\cdots
245.4.a.b 245.a 1.a 11 14.45514.455 Q\Q None 245.4.a.b 11 6-6 55 00 - - SU(2)\mathrm{SU}(2) q+q26q37q4+5q56q6+q+q^{2}-6q^{3}-7q^{4}+5q^{5}-6q^{6}+\cdots
245.4.a.c 245.a 1.a 11 14.45514.455 Q\Q None 245.4.a.b 11 66 5-5 00 ++ - SU(2)\mathrm{SU}(2) q+q2+6q37q45q5+6q6+q+q^{2}+6q^{3}-7q^{4}-5q^{5}+6q^{6}+\cdots
245.4.a.d 245.a 1.a 11 14.45514.455 Q\Q None 35.4.a.a 11 88 55 00 - - SU(2)\mathrm{SU}(2) q+q2+8q37q4+5q5+8q6+q+q^{2}+8q^{3}-7q^{4}+5q^{5}+8q^{6}+\cdots
245.4.a.e 245.a 1.a 11 14.45514.455 Q\Q None 35.4.e.a 33 2-2 55 00 - ++ SU(2)\mathrm{SU}(2) q+3q22q3+q4+5q56q6+q+3q^{2}-2q^{3}+q^{4}+5q^{5}-6q^{6}+\cdots
245.4.a.f 245.a 1.a 11 14.45514.455 Q\Q None 35.4.e.a 33 22 5-5 00 ++ - SU(2)\mathrm{SU}(2) q+3q2+2q3+q45q5+6q6+q+3q^{2}+2q^{3}+q^{4}-5q^{5}+6q^{6}+\cdots
245.4.a.g 245.a 1.a 22 14.45514.455 Q(2)\Q(\sqrt{2}) None 35.4.e.b 6-6 2-2 1010 00 - ++ SU(2)\mathrm{SU}(2) q+(3+β)q2+(13β)q3+(36β)q4+q+(-3+\beta )q^{2}+(-1-3\beta )q^{3}+(3-6\beta )q^{4}+\cdots
245.4.a.h 245.a 1.a 22 14.45514.455 Q(2)\Q(\sqrt{2}) None 35.4.e.b 6-6 22 10-10 00 ++ - SU(2)\mathrm{SU}(2) q+(3+β)q2+(1+3β)q3+(36β)q4+q+(-3+\beta )q^{2}+(1+3\beta )q^{3}+(3-6\beta )q^{4}+\cdots
245.4.a.i 245.a 1.a 22 14.45514.455 Q(11)\Q(\sqrt{11}) None 245.4.a.i 22 10-10 10-10 00 ++ - SU(2)\mathrm{SU}(2) q+(1+β)q25q3+(4+2β)q45q5+q+(1+\beta )q^{2}-5q^{3}+(4+2\beta )q^{4}-5q^{5}+\cdots
245.4.a.j 245.a 1.a 22 14.45514.455 Q(11)\Q(\sqrt{11}) None 245.4.a.i 22 1010 1010 00 - - SU(2)\mathrm{SU}(2) q+(1+β)q2+5q3+(4+2β)q4+5q5+q+(1+\beta )q^{2}+5q^{3}+(4+2\beta )q^{4}+5q^{5}+\cdots
245.4.a.k 245.a 1.a 22 14.45514.455 Q(2)\Q(\sqrt{2}) None 35.4.a.b 88 2-2 1010 00 - - SU(2)\mathrm{SU}(2) q+(4+β)q2+(1+4β)q3+(10+8β)q4+q+(4+\beta )q^{2}+(-1+4\beta )q^{3}+(10+8\beta )q^{4}+\cdots
245.4.a.l 245.a 1.a 33 14.45514.455 3.3.14360.1 None 35.4.a.c 3-3 2-2 15-15 00 ++ - SU(2)\mathrm{SU}(2) q+(1+β1)q2+(1β1+β2)q3+q+(-1+\beta _{1})q^{2}+(-1-\beta _{1}+\beta _{2})q^{3}+\cdots
245.4.a.m 245.a 1.a 55 14.45514.455 Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots) None 35.4.e.c 11 8-8 25-25 00 ++ ++ SU(2)\mathrm{SU}(2) q+β1q2+(2+β2)q3+(7+β3)q4+q+\beta _{1}q^{2}+(-2+\beta _{2})q^{3}+(7+\beta _{3})q^{4}+\cdots
245.4.a.n 245.a 1.a 55 14.45514.455 Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots) None 35.4.e.c 11 88 2525 00 - - SU(2)\mathrm{SU}(2) q+β1q2+(2β2)q3+(7+β3)q4+q+\beta _{1}q^{2}+(2-\beta _{2})q^{3}+(7+\beta _{3})q^{4}+\cdots
245.4.a.o 245.a 1.a 66 14.45514.455 6.6.1163891200.1 None 245.4.a.o 2-2 16-16 3030 00 - ++ SU(2)\mathrm{SU}(2) qβ1q2+(3+β5)q3+(2+3β1+)q4+q-\beta _{1}q^{2}+(-3+\beta _{5})q^{3}+(2+3\beta _{1}+\cdots)q^{4}+\cdots
245.4.a.p 245.a 1.a 66 14.45514.455 6.6.1163891200.1 None 245.4.a.o 2-2 1616 30-30 00 ++ ++ SU(2)\mathrm{SU}(2) qβ1q2+(3β5)q3+(2+3β1+2β2+)q4+q-\beta _{1}q^{2}+(3-\beta _{5})q^{3}+(2+3\beta _{1}+2\beta _{2}+\cdots)q^{4}+\cdots

Decomposition of S4old(Γ0(245))S_{4}^{\mathrm{old}}(\Gamma_0(245)) into lower level spaces

S4old(Γ0(245)) S_{4}^{\mathrm{old}}(\Gamma_0(245)) \simeq S4new(Γ0(5))S_{4}^{\mathrm{new}}(\Gamma_0(5))3^{\oplus 3}\oplusS4new(Γ0(7))S_{4}^{\mathrm{new}}(\Gamma_0(7))4^{\oplus 4}\oplusS4new(Γ0(35))S_{4}^{\mathrm{new}}(\Gamma_0(35))2^{\oplus 2}\oplusS4new(Γ0(49))S_{4}^{\mathrm{new}}(\Gamma_0(49))2^{\oplus 2}