Properties

Label 24640.2.a.z
Level 2464024640
Weight 22
Character orbit 24640.a
Self dual yes
Analytic conductor 196.751196.751
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [24640,2,Mod(1,24640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(24640, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("24640.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 24640=265711 24640 = 2^{6} \cdot 5 \cdot 7 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 24640.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 196.751390580196.751390580
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq5+q73q9q11+2q13+2q17+4q19+2q23+q25+6q296q31q3510q378q43+3q45+4q47+q4910q53+q55++3q99+O(q100) q - q^{5} + q^{7} - 3 q^{9} - q^{11} + 2 q^{13} + 2 q^{17} + 4 q^{19} + 2 q^{23} + q^{25} + 6 q^{29} - 6 q^{31} - q^{35} - 10 q^{37} - 8 q^{43} + 3 q^{45} + 4 q^{47} + q^{49} - 10 q^{53} + q^{55}+ \cdots + 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1
77 1 -1
1111 +1 +1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.