Properties

Label 2496.2.dp
Level $2496$
Weight $2$
Character orbit 2496.dp
Rep. character $\chi_{2496}(847,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $224$
Sturm bound $896$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.dp (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 208 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(896\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2496, [\chi])\).

Total New Old
Modular forms 1856 224 1632
Cusp forms 1728 224 1504
Eisenstein series 128 0 128

Trace form

\( 224 q + 224 q^{25} - 16 q^{43} + 32 q^{55} + 32 q^{59} - 64 q^{71} + 16 q^{73} - 16 q^{75} + 112 q^{81} + 80 q^{83} + 16 q^{89} - 40 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2496, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2496, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2496, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(832, [\chi])\)\(^{\oplus 2}\)