Properties

Label 2496.2.dx
Level $2496$
Weight $2$
Character orbit 2496.dx
Rep. character $\chi_{2496}(187,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $1792$
Sturm bound $896$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.dx (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 832 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(896\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2496, [\chi])\).

Total New Old
Modular forms 3616 1792 1824
Cusp forms 3552 1792 1760
Eisenstein series 64 0 64

Trace form

\( 1792 q + 32 q^{12} + 64 q^{20} + 80 q^{28} - 80 q^{32} + 80 q^{34} + 64 q^{46} - 64 q^{52} - 64 q^{55} + 128 q^{59} + 96 q^{60} + 96 q^{68} + 48 q^{70} + 128 q^{71} + 128 q^{76} + 128 q^{86} - 80 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2496, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2496, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2496, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(832, [\chi])\)\(^{\oplus 2}\)