Properties

Label 25.12
Level 25
Weight 12
Dimension 244
Nonzero newspaces 4
Newform subspaces 12
Sturm bound 600
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 25 = 5^{2} \)
Weight: \( k \) = \( 12 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 12 \)
Sturm bound: \(600\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(25))\).

Total New Old
Modular forms 289 265 24
Cusp forms 261 244 17
Eisenstein series 28 21 7

Trace form

\( 244 q + 34 q^{2} + 1258 q^{3} - 7618 q^{4} - 1415 q^{5} - 44882 q^{6} - 30466 q^{7} + 438950 q^{8} - 568527 q^{9} - 144240 q^{10} + 1222778 q^{11} + 3553974 q^{12} - 4347232 q^{13} - 4842106 q^{14} - 2862870 q^{15}+ \cdots + 1268950413456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(25))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
25.12.a \(\chi_{25}(1, \cdot)\) 25.12.a.a 1 1
25.12.a.b 1
25.12.a.c 2
25.12.a.d 4
25.12.a.e 4
25.12.a.f 4
25.12.b \(\chi_{25}(24, \cdot)\) 25.12.b.a 2 1
25.12.b.b 2
25.12.b.c 4
25.12.b.d 8
25.12.d \(\chi_{25}(6, \cdot)\) 25.12.d.a 108 4
25.12.e \(\chi_{25}(4, \cdot)\) 25.12.e.a 104 4

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(25))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_1(25)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)