Defining parameters
Level: | \( N \) | \(=\) | \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 252.j (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(252, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 108 | 12 | 96 |
Cusp forms | 84 | 12 | 72 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(252, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
252.2.j.a | $6$ | $2.012$ | 6.0.309123.1 | None | \(0\) | \(-2\) | \(-1\) | \(3\) | \(q+(\beta _{2}+\beta _{4})q^{3}+(-\beta _{1}+\beta _{5})q^{5}+(1+\cdots)q^{7}+\cdots\) |
252.2.j.b | $6$ | $2.012$ | 6.0.309123.1 | None | \(0\) | \(2\) | \(3\) | \(-3\) | \(q+(1+\beta _{3}+\beta _{4})q^{3}+(-\beta _{1}-\beta _{2}-\beta _{3}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(252, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)