Defining parameters
Level: | \( N \) | \(=\) | \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 252.l (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(252, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 108 | 16 | 92 |
Cusp forms | 84 | 16 | 68 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(252, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
252.2.l.a | $2$ | $2.012$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(4\) | \(4\) | \(q+(1-2\zeta_{6})q^{3}+2q^{5}+(1+2\zeta_{6})q^{7}+\cdots\) |
252.2.l.b | $14$ | $2.012$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(0\) | \(4\) | \(-3\) | \(q+\beta _{1}q^{3}+(-\beta _{5}+\beta _{9})q^{5}+\beta _{6}q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(252, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)