Properties

Label 252.2.l
Level $252$
Weight $2$
Character orbit 252.l
Rep. character $\chi_{252}(193,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $16$
Newform subspaces $2$
Sturm bound $96$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 252.l (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(252, [\chi])\).

Total New Old
Modular forms 108 16 92
Cusp forms 84 16 68
Eisenstein series 24 0 24

Trace form

\( 16 q + 8 q^{5} + q^{7} + 4 q^{9} + 4 q^{11} - q^{13} + 7 q^{15} - 5 q^{17} + 2 q^{19} + 4 q^{21} - 14 q^{23} + 16 q^{25} + 9 q^{27} + 2 q^{29} + 2 q^{31} + 5 q^{33} - 11 q^{35} - q^{37} - 29 q^{39} - 24 q^{41}+ \cdots - 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
252.2.l.a 252.l 63.g $2$ $2.012$ \(\Q(\sqrt{-3}) \) None 252.2.i.a \(0\) \(0\) \(4\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-2\zeta_{6})q^{3}+2q^{5}+(1+2\zeta_{6})q^{7}+\cdots\)
252.2.l.b 252.l 63.g $14$ $2.012$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 252.2.i.b \(0\) \(0\) \(4\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{3}+(-\beta _{5}+\beta _{9})q^{5}+\beta _{6}q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(252, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)