Defining parameters
Level: | \( N \) | \(=\) | \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 252.z (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(252, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 216 | 14 | 202 |
Cusp forms | 168 | 14 | 154 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(252, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
252.3.z.a | $2$ | $6.867$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-3\) | \(-14\) | \(q+(-2+\zeta_{6})q^{5}-7q^{7}+(15-15\zeta_{6})q^{11}+\cdots\) |
252.3.z.b | $2$ | $6.867$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-3\) | \(13\) | \(q+(-2+\zeta_{6})q^{5}+(5+3\zeta_{6})q^{7}+(-3+\cdots)q^{11}+\cdots\) |
252.3.z.c | $2$ | $6.867$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-11\) | \(q+(-8+5\zeta_{6})q^{7}+(-15+30\zeta_{6})q^{13}+\cdots\) |
252.3.z.d | $4$ | $6.867$ | \(\Q(\sqrt{-3}, \sqrt{-7})\) | None | \(0\) | \(0\) | \(0\) | \(14\) | \(q+\beta _{2}q^{5}+(7+7\beta _{1})q^{7}+(-2\beta _{2}+\beta _{3})q^{11}+\cdots\) |
252.3.z.e | $4$ | $6.867$ | \(\Q(\sqrt{-3}, \sqrt{65})\) | None | \(0\) | \(0\) | \(9\) | \(2\) | \(q+(2+\beta _{1}-\beta _{3})q^{5}+(1-\beta _{2})q^{7}+(-8\beta _{1}+\cdots)q^{11}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(252, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)