Properties

Label 252.4.b
Level $252$
Weight $4$
Character orbit 252.b
Rep. character $\chi_{252}(55,\cdot)$
Character field $\Q$
Dimension $58$
Newform subspaces $7$
Sturm bound $192$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 252.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(192\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(11\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(252, [\chi])\).

Total New Old
Modular forms 152 62 90
Cusp forms 136 58 78
Eisenstein series 16 4 12

Trace form

\( 58 q + q^{2} - 7 q^{4} - 23 q^{8} - 67 q^{14} - 43 q^{16} - 182 q^{22} - 1086 q^{25} - 199 q^{28} - 140 q^{29} - 559 q^{32} - 516 q^{37} + 454 q^{44} - 250 q^{46} - 694 q^{49} + 1229 q^{50} + 20 q^{53}+ \cdots + 1625 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
252.4.b.a 252.b 28.d $2$ $14.868$ \(\Q(\sqrt{-7}) \) \(\Q(\sqrt{-7}) \) 28.4.d.a \(-5\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(-3+\beta )q^{2}+(7-5\beta )q^{4}+(-7+14\beta )q^{7}+\cdots\)
252.4.b.b 252.b 28.d $4$ $14.868$ \(\Q(\sqrt{-2}, \sqrt{7})\) \(\Q(\sqrt{-21}) \) 252.4.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-2\beta _{1}q^{2}-8q^{4}+\beta _{2}q^{5}-7\beta _{3}q^{7}+\cdots\)
252.4.b.c 252.b 28.d $4$ $14.868$ \(\Q(i, \sqrt{7})\) \(\Q(\sqrt{-7}) \) 252.4.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{3}q^{2}+(-2-5\beta _{2})q^{4}+(-7+14\beta _{2}+\cdots)q^{7}+\cdots\)
252.4.b.d 252.b 28.d $8$ $14.868$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 28.4.d.b \(8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1-\beta _{2})q^{2}+(-2-\beta _{2}+\beta _{4}+\beta _{5}+\cdots)q^{4}+\cdots\)
252.4.b.e 252.b 28.d $12$ $14.868$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 84.4.b.a \(-1\) \(0\) \(0\) \(-10\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+\beta _{2}q^{4}+(-\beta _{1}-\beta _{8})q^{5}+\cdots\)
252.4.b.f 252.b 28.d $12$ $14.868$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 84.4.b.a \(-1\) \(0\) \(0\) \(10\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}+\beta _{3}q^{4}+(\beta _{2}-\beta _{8})q^{5}+(1+\cdots)q^{7}+\cdots\)
252.4.b.g 252.b 28.d $16$ $14.868$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 252.4.b.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+(3+\beta _{5})q^{4}+\beta _{11}q^{5}+(1+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(252, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)