Defining parameters
Level: | \( N \) | \(=\) | \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 252.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 28 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(252, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 152 | 62 | 90 |
Cusp forms | 136 | 58 | 78 |
Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(252, [\chi])\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(252, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)