Properties

Label 252.6.k
Level 252252
Weight 66
Character orbit 252.k
Rep. character χ252(37,)\chi_{252}(37,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 3434
Newform subspaces 77
Sturm bound 288288
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 252=22327 252 = 2^{2} \cdot 3^{2} \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 252.k (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 7 7
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 7 7
Sturm bound: 288288
Trace bound: 55
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M6(252,[χ])M_{6}(252, [\chi]).

Total New Old
Modular forms 504 34 470
Cusp forms 456 34 422
Eisenstein series 48 0 48

Trace form

34q+39q5206q7+279q11+1352q13+729q171381q192385q2314882q25+5820q29+2933q31+15q3515079q37+8376q41+6212q4315447q47++195524q97+O(q100) 34 q + 39 q^{5} - 206 q^{7} + 279 q^{11} + 1352 q^{13} + 729 q^{17} - 1381 q^{19} - 2385 q^{23} - 14882 q^{25} + 5820 q^{29} + 2933 q^{31} + 15 q^{35} - 15079 q^{37} + 8376 q^{41} + 6212 q^{43} - 15447 q^{47}+ \cdots + 195524 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(252,[χ])S_{6}^{\mathrm{new}}(252, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
252.6.k.a 252.k 7.c 22 40.41740.417 Q(3)\Q(\sqrt{-3}) None 84.6.i.a 00 00 69-69 245245 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(69+69ζ6)q5+(98+72ζ6)q7+q+(-69+69\zeta_{6})q^{5}+(98+7^{2}\zeta_{6})q^{7}+\cdots
252.6.k.b 252.k 7.c 22 40.41740.417 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 252.6.k.b 00 00 00 25-25 U(1)[D3]\mathrm{U}(1)[D_{3}] q+(87+149ζ6)q7775q13+(1711+)q19+q+(-87+149\zeta_{6})q^{7}-775q^{13}+(1711+\cdots)q^{19}+\cdots
252.6.k.c 252.k 7.c 22 40.41740.417 Q(3)\Q(\sqrt{-3}) None 28.6.e.a 00 00 1919 140-140 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1919ζ6)q5+(133+126ζ6)q7+q+(19-19\zeta_{6})q^{5}+(-133+126\zeta_{6})q^{7}+\cdots
252.6.k.d 252.k 7.c 44 40.41740.417 Q(3,109)\Q(\sqrt{-3}, \sqrt{109}) None 28.6.e.b 00 00 4242 112112 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(21β12β2+2β3)q5+(287β3)q7+q+(21\beta _{1}-2\beta _{2}+2\beta _{3})q^{5}+(28-7\beta _{3})q^{7}+\cdots
252.6.k.e 252.k 7.c 44 40.41740.417 Q(3,7081)\Q(\sqrt{-3}, \sqrt{7081}) None 84.6.i.b 00 00 4747 174-174 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(β1+24β2)q5+(732β1+)q7+q+(-\beta _{1}+24\beta _{2})q^{5}+(-73-2\beta _{1}+\cdots)q^{7}+\cdots
252.6.k.f 252.k 7.c 88 40.41740.417 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 84.6.i.c 00 00 00 42-42 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(β2+β3)q5+(10+30β1β6)q7+q+(\beta _{2}+\beta _{3})q^{5}+(10+30\beta _{1}-\beta _{6})q^{7}+\cdots
252.6.k.g 252.k 7.c 1212 40.41740.417 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 252.6.k.g 00 00 00 182-182 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ8q5+(824β1+3β4β7+)q7+q-\beta _{8}q^{5}+(-8-2^{4}\beta _{1}+3\beta _{4}-\beta _{7}+\cdots)q^{7}+\cdots

Decomposition of S6old(252,[χ])S_{6}^{\mathrm{old}}(252, [\chi]) into lower level spaces