Properties

Label 252.6.k
Level $252$
Weight $6$
Character orbit 252.k
Rep. character $\chi_{252}(37,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $34$
Newform subspaces $7$
Sturm bound $288$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 7 \)
Sturm bound: \(288\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(252, [\chi])\).

Total New Old
Modular forms 504 34 470
Cusp forms 456 34 422
Eisenstein series 48 0 48

Trace form

\( 34 q + 39 q^{5} - 206 q^{7} + 279 q^{11} + 1352 q^{13} + 729 q^{17} - 1381 q^{19} - 2385 q^{23} - 14882 q^{25} + 5820 q^{29} + 2933 q^{31} + 15 q^{35} - 15079 q^{37} + 8376 q^{41} + 6212 q^{43} - 15447 q^{47}+ \cdots + 195524 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
252.6.k.a 252.k 7.c $2$ $40.417$ \(\Q(\sqrt{-3}) \) None 84.6.i.a \(0\) \(0\) \(-69\) \(245\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-69+69\zeta_{6})q^{5}+(98+7^{2}\zeta_{6})q^{7}+\cdots\)
252.6.k.b 252.k 7.c $2$ $40.417$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 252.6.k.b \(0\) \(0\) \(0\) \(-25\) $\mathrm{U}(1)[D_{3}]$ \(q+(-87+149\zeta_{6})q^{7}-775q^{13}+(1711+\cdots)q^{19}+\cdots\)
252.6.k.c 252.k 7.c $2$ $40.417$ \(\Q(\sqrt{-3}) \) None 28.6.e.a \(0\) \(0\) \(19\) \(-140\) $\mathrm{SU}(2)[C_{3}]$ \(q+(19-19\zeta_{6})q^{5}+(-133+126\zeta_{6})q^{7}+\cdots\)
252.6.k.d 252.k 7.c $4$ $40.417$ \(\Q(\sqrt{-3}, \sqrt{109})\) None 28.6.e.b \(0\) \(0\) \(42\) \(112\) $\mathrm{SU}(2)[C_{3}]$ \(q+(21\beta _{1}-2\beta _{2}+2\beta _{3})q^{5}+(28-7\beta _{3})q^{7}+\cdots\)
252.6.k.e 252.k 7.c $4$ $40.417$ \(\Q(\sqrt{-3}, \sqrt{7081})\) None 84.6.i.b \(0\) \(0\) \(47\) \(-174\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+24\beta _{2})q^{5}+(-73-2\beta _{1}+\cdots)q^{7}+\cdots\)
252.6.k.f 252.k 7.c $8$ $40.417$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 84.6.i.c \(0\) \(0\) \(0\) \(-42\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{2}+\beta _{3})q^{5}+(10+30\beta _{1}-\beta _{6})q^{7}+\cdots\)
252.6.k.g 252.k 7.c $12$ $40.417$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 252.6.k.g \(0\) \(0\) \(0\) \(-182\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{8}q^{5}+(-8-2^{4}\beta _{1}+3\beta _{4}-\beta _{7}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(252, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)