Properties

Label 256.12.a
Level $256$
Weight $12$
Character orbit 256.a
Rep. character $\chi_{256}(1,\cdot)$
Character field $\Q$
Dimension $86$
Newform subspaces $17$
Sturm bound $384$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 256.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 17 \)
Sturm bound: \(384\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(256))\).

Total New Old
Modular forms 364 90 274
Cusp forms 340 86 254
Eisenstein series 24 4 20

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)Dim
\(+\)\(44\)
\(-\)\(42\)

Trace form

\( 86 q + 4842022 q^{9} - 4 q^{17} + 761718754 q^{25} + 708584 q^{33} + 4 q^{41} + 20848125510 q^{49} - 4525726280 q^{57} - 3574618080 q^{65} + 92385298388 q^{73} + 244075616654 q^{81} - 104349567180 q^{89}+ \cdots - 291432459620 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(256))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
256.12.a.a 256.a 1.a $1$ $196.696$ \(\Q\) \(\Q(\sqrt{-2}) \) 64.12.b.a \(0\) \(-394\) \(0\) \(0\) $-$ $N(\mathrm{U}(1))$ \(q-394q^{3}-21911q^{9}+141906q^{11}+\cdots\)
256.12.a.b 256.a 1.a $1$ $196.696$ \(\Q\) \(\Q(\sqrt{-1}) \) 128.12.b.b \(0\) \(0\) \(-5284\) \(0\) $+$ $N(\mathrm{U}(1))$ \(q-5284q^{5}-3^{11}q^{9}+492092q^{13}+\cdots\)
256.12.a.c 256.a 1.a $1$ $196.696$ \(\Q\) \(\Q(\sqrt{-1}) \) 128.12.b.b \(0\) \(0\) \(5284\) \(0\) $-$ $N(\mathrm{U}(1))$ \(q+5284q^{5}-3^{11}q^{9}-492092q^{13}+\cdots\)
256.12.a.d 256.a 1.a $1$ $196.696$ \(\Q\) \(\Q(\sqrt{-2}) \) 64.12.b.a \(0\) \(394\) \(0\) \(0\) $+$ $N(\mathrm{U}(1))$ \(q+394q^{3}-21911q^{9}-141906q^{11}+\cdots\)
256.12.a.e 256.a 1.a $2$ $196.696$ \(\Q(\sqrt{22155}) \) None 64.12.b.b \(0\) \(-900\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-450q^{3}+\beta q^{5}+2\beta q^{7}+25353q^{9}+\cdots\)
256.12.a.f 256.a 1.a $2$ $196.696$ \(\Q(\sqrt{2}) \) \(\Q(\sqrt{-2}) \) 128.12.b.a \(0\) \(0\) \(0\) \(0\) $-$ $N(\mathrm{U}(1))$ \(q+263\beta q^{3}+376205q^{9}-374351\beta q^{11}+\cdots\)
256.12.a.g 256.a 1.a $2$ $196.696$ \(\Q(\sqrt{22155}) \) None 64.12.b.b \(0\) \(900\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+450q^{3}-\beta q^{5}+2\beta q^{7}+25353q^{9}+\cdots\)
256.12.a.h 256.a 1.a $4$ $196.696$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 128.12.b.c \(0\) \(0\) \(-21040\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-5260+5\beta _{3})q^{5}+(13\beta _{1}+\cdots)q^{7}+\cdots\)
256.12.a.i 256.a 1.a $4$ $196.696$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 128.12.b.c \(0\) \(0\) \(21040\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(5260-5\beta _{3})q^{5}+(-13\beta _{1}+\cdots)q^{7}+\cdots\)
256.12.a.j 256.a 1.a $6$ $196.696$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 128.12.b.f \(0\) \(0\) \(-3256\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-543-\beta _{4})q^{5}+(5\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
256.12.a.k 256.a 1.a $6$ $196.696$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 128.12.b.f \(0\) \(0\) \(3256\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(543+\beta _{4})q^{5}+(-5\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots\)
256.12.a.l 256.a 1.a $8$ $196.696$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 64.12.b.c \(0\) \(-992\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(-124+\beta _{1})q^{3}+\beta _{3}q^{5}+(-\beta _{3}+\cdots)q^{7}+\cdots\)
256.12.a.m 256.a 1.a $8$ $196.696$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 128.12.b.d \(0\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(\beta _{3}-\beta _{4})q^{3}-\beta _{5}q^{5}-\beta _{1}q^{7}+(-23859+\cdots)q^{9}+\cdots\)
256.12.a.n 256.a 1.a $8$ $196.696$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 64.12.b.c \(0\) \(992\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+(124-\beta _{1})q^{3}+\beta _{3}q^{5}+(\beta _{3}-\beta _{4}+\cdots)q^{7}+\cdots\)
256.12.a.o 256.a 1.a $10$ $196.696$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 8.12.b.a \(0\) \(0\) \(0\) \(-33616\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(2\beta _{1}+\beta _{4})q^{5}+(-3362+\cdots)q^{7}+\cdots\)
256.12.a.p 256.a 1.a $10$ $196.696$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 8.12.b.a \(0\) \(0\) \(0\) \(33616\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(-2\beta _{1}-\beta _{4})q^{5}+(3362+\cdots)q^{7}+\cdots\)
256.12.a.q 256.a 1.a $12$ $196.696$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 128.12.b.e \(0\) \(0\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+\beta _{6}q^{5}+\beta _{7}q^{7}+(96002+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(256))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_0(256)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 7}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 5}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 2}\)