Defining parameters
Level: | \( N \) | \(=\) | \( 256 = 2^{8} \) |
Weight: | \( k \) | \(=\) | \( 12 \) |
Character orbit: | \([\chi]\) | \(=\) | 256.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(256))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 364 | 90 | 274 |
Cusp forms | 340 | 86 | 254 |
Eisenstein series | 24 | 4 | 20 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | Dim |
---|---|
\(+\) | \(44\) |
\(-\) | \(42\) |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(256))\) into newform subspaces
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(256))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_0(256)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 7}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 5}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 2}\)