Properties

Label 256.12.a
Level 256256
Weight 1212
Character orbit 256.a
Rep. character χ256(1,)\chi_{256}(1,\cdot)
Character field Q\Q
Dimension 8686
Newform subspaces 1717
Sturm bound 384384
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 256=28 256 = 2^{8}
Weight: k k == 12 12
Character orbit: [χ][\chi] == 256.a (trivial)
Character field: Q\Q
Newform subspaces: 17 17
Sturm bound: 384384
Trace bound: 77
Distinguishing TpT_p: 33, 55, 77

Dimensions

The following table gives the dimensions of various subspaces of M12(Γ0(256))M_{12}(\Gamma_0(256)).

Total New Old
Modular forms 364 90 274
Cusp forms 340 86 254
Eisenstein series 24 4 20

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

22TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++184184464613813817217244441281281212221010
-180180444413613616816842421261261212221010

Trace form

86q+4842022q94q17+761718754q25+708584q33+4q41+20848125510q494525726280q573574618080q65+92385298388q73+244075616654q81104349567180q89+291432459620q97+O(q100) 86 q + 4842022 q^{9} - 4 q^{17} + 761718754 q^{25} + 708584 q^{33} + 4 q^{41} + 20848125510 q^{49} - 4525726280 q^{57} - 3574618080 q^{65} + 92385298388 q^{73} + 244075616654 q^{81} - 104349567180 q^{89}+ \cdots - 291432459620 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S12new(Γ0(256))S_{12}^{\mathrm{new}}(\Gamma_0(256)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2
256.12.a.a 256.a 1.a 11 196.696196.696 Q\Q Q(2)\Q(\sqrt{-2}) 64.12.b.a 00 394-394 00 00 - N(U(1))N(\mathrm{U}(1)) q394q321911q9+141906q11+q-394q^{3}-21911q^{9}+141906q^{11}+\cdots
256.12.a.b 256.a 1.a 11 196.696196.696 Q\Q Q(1)\Q(\sqrt{-1}) 128.12.b.b 00 00 5284-5284 00 ++ N(U(1))N(\mathrm{U}(1)) q5284q5311q9+492092q13+q-5284q^{5}-3^{11}q^{9}+492092q^{13}+\cdots
256.12.a.c 256.a 1.a 11 196.696196.696 Q\Q Q(1)\Q(\sqrt{-1}) 128.12.b.b 00 00 52845284 00 - N(U(1))N(\mathrm{U}(1)) q+5284q5311q9492092q13+q+5284q^{5}-3^{11}q^{9}-492092q^{13}+\cdots
256.12.a.d 256.a 1.a 11 196.696196.696 Q\Q Q(2)\Q(\sqrt{-2}) 64.12.b.a 00 394394 00 00 ++ N(U(1))N(\mathrm{U}(1)) q+394q321911q9141906q11+q+394q^{3}-21911q^{9}-141906q^{11}+\cdots
256.12.a.e 256.a 1.a 22 196.696196.696 Q(22155)\Q(\sqrt{22155}) None 64.12.b.b 00 900-900 00 00 ++ SU(2)\mathrm{SU}(2) q450q3+βq5+2βq7+25353q9+q-450q^{3}+\beta q^{5}+2\beta q^{7}+25353q^{9}+\cdots
256.12.a.f 256.a 1.a 22 196.696196.696 Q(2)\Q(\sqrt{2}) Q(2)\Q(\sqrt{-2}) 128.12.b.a 00 00 00 00 - N(U(1))N(\mathrm{U}(1)) q+263βq3+376205q9374351βq11+q+263\beta q^{3}+376205q^{9}-374351\beta q^{11}+\cdots
256.12.a.g 256.a 1.a 22 196.696196.696 Q(22155)\Q(\sqrt{22155}) None 64.12.b.b 00 900900 00 00 - SU(2)\mathrm{SU}(2) q+450q3βq5+2βq7+25353q9+q+450q^{3}-\beta q^{5}+2\beta q^{7}+25353q^{9}+\cdots
256.12.a.h 256.a 1.a 44 196.696196.696 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 128.12.b.c 00 00 21040-21040 00 - SU(2)\mathrm{SU}(2) q+β1q3+(5260+5β3)q5+(13β1+)q7+q+\beta _{1}q^{3}+(-5260+5\beta _{3})q^{5}+(13\beta _{1}+\cdots)q^{7}+\cdots
256.12.a.i 256.a 1.a 44 196.696196.696 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 128.12.b.c 00 00 2104021040 00 ++ SU(2)\mathrm{SU}(2) q+β1q3+(52605β3)q5+(13β1+)q7+q+\beta _{1}q^{3}+(5260-5\beta _{3})q^{5}+(-13\beta _{1}+\cdots)q^{7}+\cdots
256.12.a.j 256.a 1.a 66 196.696196.696 Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots) None 128.12.b.f 00 00 3256-3256 00 ++ SU(2)\mathrm{SU}(2) q+β1q3+(543β4)q5+(5β1+β2+)q7+q+\beta _{1}q^{3}+(-543-\beta _{4})q^{5}+(5\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots
256.12.a.k 256.a 1.a 66 196.696196.696 Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots) None 128.12.b.f 00 00 32563256 00 - SU(2)\mathrm{SU}(2) q+β1q3+(543+β4)q5+(5β1β2+)q7+q+\beta _{1}q^{3}+(543+\beta _{4})q^{5}+(-5\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots
256.12.a.l 256.a 1.a 88 196.696196.696 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 64.12.b.c 00 992-992 00 00 - SU(2)\mathrm{SU}(2) q+(124+β1)q3+β3q5+(β3+)q7+q+(-124+\beta _{1})q^{3}+\beta _{3}q^{5}+(-\beta _{3}+\cdots)q^{7}+\cdots
256.12.a.m 256.a 1.a 88 196.696196.696 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 128.12.b.d 00 00 00 00 - SU(2)\mathrm{SU}(2) q+(β3β4)q3β5q5β1q7+(23859+)q9+q+(\beta _{3}-\beta _{4})q^{3}-\beta _{5}q^{5}-\beta _{1}q^{7}+(-23859+\cdots)q^{9}+\cdots
256.12.a.n 256.a 1.a 88 196.696196.696 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 64.12.b.c 00 992992 00 00 ++ SU(2)\mathrm{SU}(2) q+(124β1)q3+β3q5+(β3β4+)q7+q+(124-\beta _{1})q^{3}+\beta _{3}q^{5}+(\beta _{3}-\beta _{4}+\cdots)q^{7}+\cdots
256.12.a.o 256.a 1.a 1010 196.696196.696 Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots) None 8.12.b.a 00 00 00 33616-33616 - SU(2)\mathrm{SU}(2) qβ1q3+(2β1+β4)q5+(3362+)q7+q-\beta _{1}q^{3}+(2\beta _{1}+\beta _{4})q^{5}+(-3362+\cdots)q^{7}+\cdots
256.12.a.p 256.a 1.a 1010 196.696196.696 Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots) None 8.12.b.a 00 00 00 3361633616 ++ SU(2)\mathrm{SU}(2) qβ1q3+(2β1β4)q5+(3362+)q7+q-\beta _{1}q^{3}+(-2\beta _{1}-\beta _{4})q^{5}+(3362+\cdots)q^{7}+\cdots
256.12.a.q 256.a 1.a 1212 196.696196.696 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 128.12.b.e 00 00 00 00 ++ SU(2)\mathrm{SU}(2) qβ1q3+β6q5+β7q7+(96002+)q9+q-\beta _{1}q^{3}+\beta _{6}q^{5}+\beta _{7}q^{7}+(96002+\cdots)q^{9}+\cdots

Decomposition of S12old(Γ0(256))S_{12}^{\mathrm{old}}(\Gamma_0(256)) into lower level spaces