Properties

Label 25992.2.a.bb
Level 2599225992
Weight 22
Character orbit 25992.a
Self dual yes
Analytic conductor 207.547207.547
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [25992,2,Mod(1,25992)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(25992, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("25992.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 25992=2332192 25992 = 2^{3} \cdot 3^{2} \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 25992.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 207.547164934207.547164934
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+4q53q112q132q176q23+11q254q29+10q312q37+9q414q43+12q477q492q5312q55q598q618q65+q97+O(q100) q + 4 q^{5} - 3 q^{11} - 2 q^{13} - 2 q^{17} - 6 q^{23} + 11 q^{25} - 4 q^{29} + 10 q^{31} - 2 q^{37} + 9 q^{41} - 4 q^{43} + 12 q^{47} - 7 q^{49} - 2 q^{53} - 12 q^{55} - q^{59} - 8 q^{61} - 8 q^{65}+ \cdots - q^{97}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
1919 1 -1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.