Properties

Label 26.8.c
Level $26$
Weight $8$
Character orbit 26.c
Rep. character $\chi_{26}(3,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $14$
Newform subspaces $2$
Sturm bound $28$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 26.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(28\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(26, [\chi])\).

Total New Old
Modular forms 54 14 40
Cusp forms 46 14 32
Eisenstein series 8 0 8

Trace form

\( 14 q + 8 q^{2} - 448 q^{4} - 110 q^{5} + 612 q^{7} - 1024 q^{8} - 3335 q^{9} + 4888 q^{10} - 11620 q^{11} - 33319 q^{13} - 27328 q^{14} + 3104 q^{15} - 28672 q^{16} + 21579 q^{17} - 113488 q^{18} - 97536 q^{19}+ \cdots - 23827928 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(26, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
26.8.c.a 26.c 13.c $6$ $8.122$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 26.8.c.a \(-24\) \(0\) \(-666\) \(1160\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-8-8\beta _{3})q^{2}-\beta _{1}q^{3}+2^{6}\beta _{3}q^{4}+\cdots\)
26.8.c.b 26.c 13.c $8$ $8.122$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 26.8.c.b \(32\) \(0\) \(556\) \(-548\) $\mathrm{SU}(2)[C_{3}]$ \(q-8\beta _{1}q^{2}+\beta _{3}q^{3}+(-2^{6}-2^{6}\beta _{1}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(26, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(26, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)