Properties

Label 26.8.e
Level $26$
Weight $8$
Character orbit 26.e
Rep. character $\chi_{26}(17,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $16$
Newform subspaces $1$
Sturm bound $28$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 26.e (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(28\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(26, [\chi])\).

Total New Old
Modular forms 52 16 36
Cusp forms 44 16 28
Eisenstein series 8 0 8

Trace form

\( 16 q + 512 q^{4} + 2520 q^{7} - 4684 q^{9} + 2432 q^{10} - 8496 q^{11} - 3620 q^{13} + 34560 q^{14} + 51648 q^{15} - 32768 q^{16} + 41520 q^{17} - 54432 q^{19} - 16128 q^{20} - 17280 q^{22} - 7560 q^{23}+ \cdots + 19031040 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(26, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
26.8.e.a 26.e 13.e $16$ $8.122$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 26.8.e.a \(0\) \(0\) \(0\) \(2520\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{7}-\beta _{9})q^{2}+\beta _{3}q^{3}+2^{6}\beta _{1}q^{4}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(26, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(26, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)