Properties

Label 26.8.e
Level 2626
Weight 88
Character orbit 26.e
Rep. character χ26(17,)\chi_{26}(17,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 1616
Newform subspaces 11
Sturm bound 2828
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 26=213 26 = 2 \cdot 13
Weight: k k == 8 8
Character orbit: [χ][\chi] == 26.e (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 1 1
Sturm bound: 2828
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M8(26,[χ])M_{8}(26, [\chi]).

Total New Old
Modular forms 52 16 36
Cusp forms 44 16 28
Eisenstein series 8 0 8

Trace form

16q+512q4+2520q74684q9+2432q108496q113620q13+34560q14+51648q1532768q16+41520q1754432q1916128q2017280q227560q23++19031040q98+O(q100) 16 q + 512 q^{4} + 2520 q^{7} - 4684 q^{9} + 2432 q^{10} - 8496 q^{11} - 3620 q^{13} + 34560 q^{14} + 51648 q^{15} - 32768 q^{16} + 41520 q^{17} - 54432 q^{19} - 16128 q^{20} - 17280 q^{22} - 7560 q^{23}+ \cdots + 19031040 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S8new(26,[χ])S_{8}^{\mathrm{new}}(26, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
26.8.e.a 26.e 13.e 1616 8.1228.122 Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots) None 26.8.e.a 00 00 00 25202520 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(β7β9)q2+β3q3+26β1q4+q+(-\beta _{7}-\beta _{9})q^{2}+\beta _{3}q^{3}+2^{6}\beta _{1}q^{4}+\cdots

Decomposition of S8old(26,[χ])S_{8}^{\mathrm{old}}(26, [\chi]) into lower level spaces

S8old(26,[χ]) S_{8}^{\mathrm{old}}(26, [\chi]) \simeq S8new(13,[χ])S_{8}^{\mathrm{new}}(13, [\chi])2^{\oplus 2}