Properties

Label 260.2
Level 260
Weight 2
Dimension 1000
Nonzero newspaces 20
Newform subspaces 43
Sturm bound 8064
Trace bound 9

Downloads

Learn more

Defining parameters

Level: N N = 260=22513 260 = 2^{2} \cdot 5 \cdot 13
Weight: k k = 2 2
Nonzero newspaces: 20 20
Newform subspaces: 43 43
Sturm bound: 80648064
Trace bound: 99

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(260))M_{2}(\Gamma_1(260)).

Total New Old
Modular forms 2256 1128 1128
Cusp forms 1777 1000 777
Eisenstein series 479 128 351

Trace form

1000q8q2+4q312q426q536q620q810q930q10+12q1124q1224q14+8q1520q1618q1736q1834q20108q21++108q99+O(q100) 1000 q - 8 q^{2} + 4 q^{3} - 12 q^{4} - 26 q^{5} - 36 q^{6} - 20 q^{8} - 10 q^{9} - 30 q^{10} + 12 q^{11} - 24 q^{12} - 24 q^{14} + 8 q^{15} - 20 q^{16} - 18 q^{17} - 36 q^{18} - 34 q^{20} - 108 q^{21}+ \cdots + 108 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(260))S_{2}^{\mathrm{new}}(\Gamma_1(260))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
260.2.a χ260(1,)\chi_{260}(1, \cdot) 260.2.a.a 1 1
260.2.a.b 3
260.2.c χ260(209,)\chi_{260}(209, \cdot) 260.2.c.a 6 1
260.2.d χ260(129,)\chi_{260}(129, \cdot) 260.2.d.a 8 1
260.2.f χ260(181,)\chi_{260}(181, \cdot) 260.2.f.a 6 1
260.2.i χ260(61,)\chi_{260}(61, \cdot) 260.2.i.a 2 2
260.2.i.b 2
260.2.i.c 2
260.2.i.d 2
260.2.j χ260(31,)\chi_{260}(31, \cdot) 260.2.j.a 56 2
260.2.m χ260(57,)\chi_{260}(57, \cdot) 260.2.m.a 2 2
260.2.m.b 4
260.2.m.c 8
260.2.o χ260(27,)\chi_{260}(27, \cdot) 260.2.o.a 72 2
260.2.p χ260(103,)\chi_{260}(103, \cdot) 260.2.p.a 2 2
260.2.p.b 2
260.2.p.c 8
260.2.p.d 64
260.2.r χ260(177,)\chi_{260}(177, \cdot) 260.2.r.a 2 2
260.2.r.b 4
260.2.r.c 8
260.2.u χ260(99,)\chi_{260}(99, \cdot) 260.2.u.a 2 2
260.2.u.b 2
260.2.u.c 72
260.2.x χ260(101,)\chi_{260}(101, \cdot) 260.2.x.a 8 2
260.2.z χ260(49,)\chi_{260}(49, \cdot) 260.2.z.a 16 2
260.2.ba χ260(9,)\chi_{260}(9, \cdot) 260.2.ba.a 12 2
260.2.bc χ260(19,)\chi_{260}(19, \cdot) 260.2.bc.a 4 4
260.2.bc.b 4
260.2.bc.c 144
260.2.bf χ260(37,)\chi_{260}(37, \cdot) 260.2.bf.a 4 4
260.2.bf.b 4
260.2.bf.c 20
260.2.bg χ260(23,)\chi_{260}(23, \cdot) 260.2.bg.a 4 4
260.2.bg.b 4
260.2.bg.c 144
260.2.bj χ260(3,)\chi_{260}(3, \cdot) 260.2.bj.a 4 4
260.2.bj.b 4
260.2.bj.c 144
260.2.bk χ260(33,)\chi_{260}(33, \cdot) 260.2.bk.a 4 4
260.2.bk.b 4
260.2.bk.c 20
260.2.bn χ260(11,)\chi_{260}(11, \cdot) 260.2.bn.a 112 4

Decomposition of S2old(Γ1(260))S_{2}^{\mathrm{old}}(\Gamma_1(260)) into lower level spaces