Defining parameters
Level: | \( N \) | \(=\) | \( 264 = 2^{3} \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 264.w (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 264 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(5\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(264, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 208 | 208 | 0 |
Cusp forms | 176 | 176 | 0 |
Eisenstein series | 32 | 32 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(264, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
264.2.w.a | $8$ | $2.108$ | 8.0.64000000.1 | \(\Q(\sqrt{-2}) \) | \(0\) | \(2\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(\beta _{2}+\beta _{7})q^{3}+2\beta _{2}q^{4}+(-2+\cdots)q^{6}+\cdots\) |
264.2.w.b | $8$ | $2.108$ | 8.0.64000000.1 | \(\Q(\sqrt{-2}) \) | \(0\) | \(2\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{3}-\beta _{4}+\beta _{5}-\beta _{7})q^{3}+\cdots\) |
264.2.w.c | $16$ | $2.108$ | 16.0.\(\cdots\).9 | None | \(0\) | \(-12\) | \(0\) | \(0\) | \(q-\beta _{11}q^{2}+(-1-\beta _{2}-\beta _{4}-\beta _{5}+\beta _{7}+\cdots)q^{3}+\cdots\) |
264.2.w.d | $144$ | $2.108$ | None | \(0\) | \(2\) | \(0\) | \(0\) |