Properties

Label 264.2.w
Level $264$
Weight $2$
Character orbit 264.w
Rep. character $\chi_{264}(59,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $176$
Newform subspaces $4$
Sturm bound $96$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 264.w (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 264 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 4 \)
Sturm bound: \(96\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(5\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(264, [\chi])\).

Total New Old
Modular forms 208 208 0
Cusp forms 176 176 0
Eisenstein series 32 32 0

Trace form

\( 176 q - 6 q^{3} - 6 q^{4} - 7 q^{6} - 6 q^{9} - 16 q^{10} - 2 q^{12} - 10 q^{16} - 7 q^{18} - 12 q^{19} - 32 q^{22} + 7 q^{24} - 40 q^{25} - 6 q^{27} + 14 q^{28} - 14 q^{30} - 18 q^{33} - 12 q^{34} - 29 q^{36}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(264, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
264.2.w.a 264.w 264.w $8$ $2.108$ 8.0.64000000.1 \(\Q(\sqrt{-2}) \) 264.2.w.a \(0\) \(2\) \(0\) \(0\) $\mathrm{U}(1)[D_{10}]$ \(q+\beta _{1}q^{2}+(\beta _{2}+\beta _{7})q^{3}+2\beta _{2}q^{4}+(-2+\cdots)q^{6}+\cdots\)
264.2.w.b 264.w 264.w $8$ $2.108$ 8.0.64000000.1 \(\Q(\sqrt{-2}) \) 264.2.w.a \(0\) \(2\) \(0\) \(0\) $\mathrm{U}(1)[D_{10}]$ \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{3}-\beta _{4}+\beta _{5}-\beta _{7})q^{3}+\cdots\)
264.2.w.c 264.w 264.w $16$ $2.108$ 16.0.\(\cdots\).9 None 264.2.w.c \(0\) \(-12\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{11}q^{2}+(-1-\beta _{2}-\beta _{4}-\beta _{5}+\beta _{7}+\cdots)q^{3}+\cdots\)
264.2.w.d 264.w 264.w $144$ $2.108$ None 264.2.w.d \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$