Defining parameters
Level: | \( N \) | = | \( 264 = 2^{3} \cdot 3 \cdot 11 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(15360\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(264))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6000 | 2428 | 3572 |
Cusp forms | 5520 | 2356 | 3164 |
Eisenstein series | 480 | 72 | 408 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(264))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
264.4.a | \(\chi_{264}(1, \cdot)\) | 264.4.a.a | 1 | 1 |
264.4.a.b | 1 | |||
264.4.a.c | 1 | |||
264.4.a.d | 1 | |||
264.4.a.e | 2 | |||
264.4.a.f | 2 | |||
264.4.a.g | 2 | |||
264.4.a.h | 3 | |||
264.4.a.i | 3 | |||
264.4.b | \(\chi_{264}(65, \cdot)\) | 264.4.b.a | 18 | 1 |
264.4.b.b | 18 | |||
264.4.d | \(\chi_{264}(23, \cdot)\) | None | 0 | 1 |
264.4.f | \(\chi_{264}(133, \cdot)\) | 264.4.f.a | 2 | 1 |
264.4.f.b | 28 | |||
264.4.f.c | 30 | |||
264.4.h | \(\chi_{264}(43, \cdot)\) | 264.4.h.a | 36 | 1 |
264.4.h.b | 36 | |||
264.4.k | \(\chi_{264}(155, \cdot)\) | n/a | 120 | 1 |
264.4.m | \(\chi_{264}(197, \cdot)\) | n/a | 140 | 1 |
264.4.o | \(\chi_{264}(175, \cdot)\) | None | 0 | 1 |
264.4.q | \(\chi_{264}(25, \cdot)\) | 264.4.q.a | 16 | 4 |
264.4.q.b | 16 | |||
264.4.q.c | 20 | |||
264.4.q.d | 20 | |||
264.4.s | \(\chi_{264}(7, \cdot)\) | None | 0 | 4 |
264.4.u | \(\chi_{264}(29, \cdot)\) | n/a | 560 | 4 |
264.4.w | \(\chi_{264}(59, \cdot)\) | n/a | 560 | 4 |
264.4.z | \(\chi_{264}(19, \cdot)\) | n/a | 288 | 4 |
264.4.bb | \(\chi_{264}(37, \cdot)\) | n/a | 288 | 4 |
264.4.bd | \(\chi_{264}(47, \cdot)\) | None | 0 | 4 |
264.4.bf | \(\chi_{264}(17, \cdot)\) | n/a | 144 | 4 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(264))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(264)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(132))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(264))\)\(^{\oplus 1}\)