Properties

Label 264.4
Level 264
Weight 4
Dimension 2356
Nonzero newspaces 12
Sturm bound 15360
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(15360\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(264))\).

Total New Old
Modular forms 6000 2428 3572
Cusp forms 5520 2356 3164
Eisenstein series 480 72 408

Trace form

\( 2356 q - 4 q^{2} - 12 q^{3} - 60 q^{4} - 28 q^{5} + 18 q^{6} - 28 q^{7} + 152 q^{8} + 74 q^{9} - 92 q^{10} + 28 q^{11} + 92 q^{12} + 148 q^{13} + 200 q^{14} + 236 q^{15} + 172 q^{16} - 288 q^{17} - 342 q^{18}+ \cdots - 5620 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(264))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
264.4.a \(\chi_{264}(1, \cdot)\) 264.4.a.a 1 1
264.4.a.b 1
264.4.a.c 1
264.4.a.d 1
264.4.a.e 2
264.4.a.f 2
264.4.a.g 2
264.4.a.h 3
264.4.a.i 3
264.4.b \(\chi_{264}(65, \cdot)\) 264.4.b.a 18 1
264.4.b.b 18
264.4.d \(\chi_{264}(23, \cdot)\) None 0 1
264.4.f \(\chi_{264}(133, \cdot)\) 264.4.f.a 2 1
264.4.f.b 28
264.4.f.c 30
264.4.h \(\chi_{264}(43, \cdot)\) 264.4.h.a 36 1
264.4.h.b 36
264.4.k \(\chi_{264}(155, \cdot)\) n/a 120 1
264.4.m \(\chi_{264}(197, \cdot)\) n/a 140 1
264.4.o \(\chi_{264}(175, \cdot)\) None 0 1
264.4.q \(\chi_{264}(25, \cdot)\) 264.4.q.a 16 4
264.4.q.b 16
264.4.q.c 20
264.4.q.d 20
264.4.s \(\chi_{264}(7, \cdot)\) None 0 4
264.4.u \(\chi_{264}(29, \cdot)\) n/a 560 4
264.4.w \(\chi_{264}(59, \cdot)\) n/a 560 4
264.4.z \(\chi_{264}(19, \cdot)\) n/a 288 4
264.4.bb \(\chi_{264}(37, \cdot)\) n/a 288 4
264.4.bd \(\chi_{264}(47, \cdot)\) None 0 4
264.4.bf \(\chi_{264}(17, \cdot)\) n/a 144 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(264))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(264)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(132))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(264))\)\(^{\oplus 1}\)