Defining parameters
Level: | \( N \) | \(=\) | \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2640.cu (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 48 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(1152\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2640, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1168 | 640 | 528 |
Cusp forms | 1136 | 640 | 496 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2640, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2640, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2640, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(528, [\chi])\)\(^{\oplus 2}\)