Properties

Label 2640.2.cu
Level $2640$
Weight $2$
Character orbit 2640.cu
Rep. character $\chi_{2640}(1211,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $640$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2640.cu (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 48 \)
Character field: \(\Q(i)\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2640, [\chi])\).

Total New Old
Modular forms 1168 640 528
Cusp forms 1136 640 496
Eisenstein series 32 0 32

Trace form

\( 640 q - 24 q^{6} + 8 q^{10} - 24 q^{12} + 8 q^{16} + 40 q^{18} - 16 q^{19} + 40 q^{24} + 48 q^{27} + 8 q^{34} - 24 q^{36} + 96 q^{39} - 56 q^{46} - 40 q^{48} + 640 q^{49} + 80 q^{51} + 144 q^{58} + 32 q^{61}+ \cdots - 208 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2640, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2640, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2640, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(528, [\chi])\)\(^{\oplus 2}\)