Defining parameters
Level: | \( N \) | \(=\) | \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2640.dp (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 1320 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(1152\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2640, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2368 | 0 | 2368 |
Cusp forms | 2240 | 0 | 2240 |
Eisenstein series | 128 | 0 | 128 |
Decomposition of \(S_{2}^{\mathrm{old}}(2640, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2640, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1320, [\chi])\)\(^{\oplus 2}\)