Properties

Label 2640.2.w
Level $2640$
Weight $2$
Character orbit 2640.w
Rep. character $\chi_{2640}(1321,\cdot)$
Character field $\Q$
Dimension $0$
Newform subspaces $0$
Sturm bound $1152$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2640.w (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 0 \)
Sturm bound: \(1152\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2640, [\chi])\).

Total New Old
Modular forms 592 0 592
Cusp forms 560 0 560
Eisenstein series 32 0 32

Decomposition of \(S_{2}^{\mathrm{old}}(2640, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2640, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(264, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(440, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1320, [\chi])\)\(^{\oplus 2}\)