Properties

Label 2646.2.a
Level 26462646
Weight 22
Character orbit 2646.a
Rep. character χ2646(1,)\chi_{2646}(1,\cdot)
Character field Q\Q
Dimension 5454
Newform subspaces 4242
Sturm bound 10081008
Trace bound 1313

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2646=23372 2646 = 2 \cdot 3^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2646.a (trivial)
Character field: Q\Q
Newform subspaces: 42 42
Sturm bound: 10081008
Trace bound: 1313
Distinguishing TpT_p: 55, 1111, 1313, 1717

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(2646))M_{2}(\Gamma_0(2646)).

Total New Old
Modular forms 552 54 498
Cusp forms 457 54 403
Eisenstein series 95 0 95

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

223377FrickeDim
++++++++66
++++--88
++-++-77
++--++66
-++++-88
-++-++55
--++++55
----99
Plus space++2222
Minus space-3232

Trace form

54q+54q410q10+54q16+4q196q22+40q25+6q318q34+16q3710q40+64q434q46+58q55+4q58+54q64+32q67+38q73+46q97+O(q100) 54 q + 54 q^{4} - 10 q^{10} + 54 q^{16} + 4 q^{19} - 6 q^{22} + 40 q^{25} + 6 q^{31} - 8 q^{34} + 16 q^{37} - 10 q^{40} + 64 q^{43} - 4 q^{46} + 58 q^{55} + 4 q^{58} + 54 q^{64} + 32 q^{67} + 38 q^{73}+ \cdots - 46 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(2646))S_{2}^{\mathrm{new}}(\Gamma_0(2646)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 7
2646.2.a.a 2646.a 1.a 11 21.12821.128 Q\Q None 54.2.a.a 1-1 00 3-3 00 ++ ++ - SU(2)\mathrm{SU}(2) qq2+q43q5q8+3q103q11+q-q^{2}+q^{4}-3q^{5}-q^{8}+3q^{10}-3q^{11}+\cdots
2646.2.a.b 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.g.a 1-1 00 3-3 00 ++ - ++ SU(2)\mathrm{SU}(2) qq2+q43q5q8+3q104q13+q-q^{2}+q^{4}-3q^{5}-q^{8}+3q^{10}-4q^{13}+\cdots
2646.2.a.c 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.g.c 1-1 00 2-2 00 ++ ++ - SU(2)\mathrm{SU}(2) qq2+q42q5q8+2q105q11+q-q^{2}+q^{4}-2q^{5}-q^{8}+2q^{10}-5q^{11}+\cdots
2646.2.a.d 2646.a 1.a 11 21.12821.128 Q\Q None 2646.2.a.d 1-1 00 2-2 00 ++ ++ - SU(2)\mathrm{SU}(2) qq2+q42q5q8+2q10+2q11+q-q^{2}+q^{4}-2q^{5}-q^{8}+2q^{10}+2q^{11}+\cdots
2646.2.a.e 2646.a 1.a 11 21.12821.128 Q\Q None 2646.2.a.e 1-1 00 1-1 00 ++ - - SU(2)\mathrm{SU}(2) qq2+q4q5q8+q10q11+q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}-q^{11}+\cdots
2646.2.a.f 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.a.d 1-1 00 00 00 ++ - - SU(2)\mathrm{SU}(2) qq2+q4q85q13+q16+3q17+q-q^{2}+q^{4}-q^{8}-5q^{13}+q^{16}+3q^{17}+\cdots
2646.2.a.g 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.g.b 1-1 00 00 00 ++ ++ - SU(2)\mathrm{SU}(2) qq2+q4q8+6q115q13+q-q^{2}+q^{4}-q^{8}+6q^{11}-5q^{13}+\cdots
2646.2.a.h 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.g.b 1-1 00 00 00 ++ - ++ SU(2)\mathrm{SU}(2) qq2+q4q8+6q11+5q13+q-q^{2}+q^{4}-q^{8}+6q^{11}+5q^{13}+\cdots
2646.2.a.i 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.a.c 1-1 00 11 00 ++ - - SU(2)\mathrm{SU}(2) qq2+q4+q5q8q105q11+q-q^{2}+q^{4}+q^{5}-q^{8}-q^{10}-5q^{11}+\cdots
2646.2.a.j 2646.a 1.a 11 21.12821.128 Q\Q None 2646.2.a.e 1-1 00 11 00 ++ ++ - SU(2)\mathrm{SU}(2) qq2+q4+q5q8q10q11+q-q^{2}+q^{4}+q^{5}-q^{8}-q^{10}-q^{11}+\cdots
2646.2.a.k 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.g.c 1-1 00 22 00 ++ - ++ SU(2)\mathrm{SU}(2) qq2+q4+2q5q82q105q11+q-q^{2}+q^{4}+2q^{5}-q^{8}-2q^{10}-5q^{11}+\cdots
2646.2.a.l 2646.a 1.a 11 21.12821.128 Q\Q None 2646.2.a.d 1-1 00 22 00 ++ - - SU(2)\mathrm{SU}(2) qq2+q4+2q5q82q10+2q11+q-q^{2}+q^{4}+2q^{5}-q^{8}-2q^{10}+2q^{11}+\cdots
2646.2.a.m 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.g.a 1-1 00 33 00 ++ ++ - SU(2)\mathrm{SU}(2) qq2+q4+3q5q83q10+4q13+q-q^{2}+q^{4}+3q^{5}-q^{8}-3q^{10}+4q^{13}+\cdots
2646.2.a.n 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.a.b 1-1 00 33 00 ++ ++ - SU(2)\mathrm{SU}(2) qq2+q4+3q5q83q10+3q11+q-q^{2}+q^{4}+3q^{5}-q^{8}-3q^{10}+3q^{11}+\cdots
2646.2.a.o 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.a.a 1-1 00 44 00 ++ ++ - SU(2)\mathrm{SU}(2) qq2+q4+4q5q84q10+4q11+q-q^{2}+q^{4}+4q^{5}-q^{8}-4q^{10}+4q^{11}+\cdots
2646.2.a.p 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.a.a 11 00 4-4 00 - - - SU(2)\mathrm{SU}(2) q+q2+q44q5+q84q104q11+q+q^{2}+q^{4}-4q^{5}+q^{8}-4q^{10}-4q^{11}+\cdots
2646.2.a.q 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.a.b 11 00 3-3 00 - ++ - SU(2)\mathrm{SU}(2) q+q2+q43q5+q83q103q11+q+q^{2}+q^{4}-3q^{5}+q^{8}-3q^{10}-3q^{11}+\cdots
2646.2.a.r 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.g.a 11 00 3-3 00 - - - SU(2)\mathrm{SU}(2) q+q2+q43q5+q83q10+4q13+q+q^{2}+q^{4}-3q^{5}+q^{8}-3q^{10}+4q^{13}+\cdots
2646.2.a.s 2646.a 1.a 11 21.12821.128 Q\Q None 2646.2.a.d 11 00 2-2 00 - ++ - SU(2)\mathrm{SU}(2) q+q2+q42q5+q82q102q11+q+q^{2}+q^{4}-2q^{5}+q^{8}-2q^{10}-2q^{11}+\cdots
2646.2.a.t 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.g.c 11 00 2-2 00 - ++ ++ SU(2)\mathrm{SU}(2) q+q2+q42q5+q82q10+5q11+q+q^{2}+q^{4}-2q^{5}+q^{8}-2q^{10}+5q^{11}+\cdots
2646.2.a.u 2646.a 1.a 11 21.12821.128 Q\Q None 2646.2.a.e 11 00 1-1 00 - ++ - SU(2)\mathrm{SU}(2) q+q2+q4q5+q8q10+q11+q+q^{2}+q^{4}-q^{5}+q^{8}-q^{10}+q^{11}+\cdots
2646.2.a.v 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.a.c 11 00 1-1 00 - - - SU(2)\mathrm{SU}(2) q+q2+q4q5+q8q10+5q11+q+q^{2}+q^{4}-q^{5}+q^{8}-q^{10}+5q^{11}+\cdots
2646.2.a.w 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.g.b 11 00 00 00 - ++ - SU(2)\mathrm{SU}(2) q+q2+q4+q86q115q13+q+q^{2}+q^{4}+q^{8}-6q^{11}-5q^{13}+\cdots
2646.2.a.x 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.g.b 11 00 00 00 - - ++ SU(2)\mathrm{SU}(2) q+q2+q4+q86q11+5q13+q+q^{2}+q^{4}+q^{8}-6q^{11}+5q^{13}+\cdots
2646.2.a.y 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.a.d 11 00 00 00 - ++ - SU(2)\mathrm{SU}(2) q+q2+q4+q85q13+q163q17+q+q^{2}+q^{4}+q^{8}-5q^{13}+q^{16}-3q^{17}+\cdots
2646.2.a.z 2646.a 1.a 11 21.12821.128 Q\Q None 2646.2.a.e 11 00 11 00 - - - SU(2)\mathrm{SU}(2) q+q2+q4+q5+q8+q10+q11+q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}+q^{11}+\cdots
2646.2.a.ba 2646.a 1.a 11 21.12821.128 Q\Q None 2646.2.a.d 11 00 22 00 - - - SU(2)\mathrm{SU}(2) q+q2+q4+2q5+q8+2q102q11+q+q^{2}+q^{4}+2q^{5}+q^{8}+2q^{10}-2q^{11}+\cdots
2646.2.a.bb 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.g.c 11 00 22 00 - - - SU(2)\mathrm{SU}(2) q+q2+q4+2q5+q8+2q10+5q11+q+q^{2}+q^{4}+2q^{5}+q^{8}+2q^{10}+5q^{11}+\cdots
2646.2.a.bc 2646.a 1.a 11 21.12821.128 Q\Q None 378.2.g.a 11 00 33 00 - ++ ++ SU(2)\mathrm{SU}(2) q+q2+q4+3q5+q8+3q104q13+q+q^{2}+q^{4}+3q^{5}+q^{8}+3q^{10}-4q^{13}+\cdots
2646.2.a.bd 2646.a 1.a 11 21.12821.128 Q\Q None 54.2.a.a 11 00 33 00 - - - SU(2)\mathrm{SU}(2) q+q2+q4+3q5+q8+3q10+3q11+q+q^{2}+q^{4}+3q^{5}+q^{8}+3q^{10}+3q^{11}+\cdots
2646.2.a.be 2646.a 1.a 22 21.12821.128 Q(2)\Q(\sqrt{2}) None 2646.2.a.be 2-2 00 6-6 00 ++ ++ ++ SU(2)\mathrm{SU}(2) qq2+q4+(3+β)q5q8+(3+)q10+q-q^{2}+q^{4}+(-3+\beta )q^{5}-q^{8}+(3+\cdots)q^{10}+\cdots
2646.2.a.bf 2646.a 1.a 22 21.12821.128 Q(7)\Q(\sqrt{7}) None 378.2.g.g 2-2 00 2-2 00 ++ - - SU(2)\mathrm{SU}(2) qq2+q4+(1+β)q5q8+(1+)q10+q-q^{2}+q^{4}+(-1+\beta )q^{5}-q^{8}+(1+\cdots)q^{10}+\cdots
2646.2.a.bg 2646.a 1.a 22 21.12821.128 Q(2)\Q(\sqrt{2}) None 2646.2.a.bg 2-2 00 00 00 ++ ++ ++ SU(2)\mathrm{SU}(2) qq2+q4+βq5q8βq10+(2+)q11+q-q^{2}+q^{4}+\beta q^{5}-q^{8}-\beta q^{10}+(2+\cdots)q^{11}+\cdots
2646.2.a.bh 2646.a 1.a 22 21.12821.128 Q(2)\Q(\sqrt{2}) None 2646.2.a.bg 2-2 00 00 00 ++ - ++ SU(2)\mathrm{SU}(2) qq2+q4+βq5q8βq10+(2+)q11+q-q^{2}+q^{4}+\beta q^{5}-q^{8}-\beta q^{10}+(2+\cdots)q^{11}+\cdots
2646.2.a.bi 2646.a 1.a 22 21.12821.128 Q(7)\Q(\sqrt{7}) None 378.2.g.g 2-2 00 22 00 ++ ++ ++ SU(2)\mathrm{SU}(2) qq2+q4+(1+β)q5q8+(1+)q10+q-q^{2}+q^{4}+(1+\beta )q^{5}-q^{8}+(-1+\cdots)q^{10}+\cdots
2646.2.a.bj 2646.a 1.a 22 21.12821.128 Q(2)\Q(\sqrt{2}) None 2646.2.a.be 2-2 00 66 00 ++ - ++ SU(2)\mathrm{SU}(2) qq2+q4+(3+β)q5q8+(3+)q10+q-q^{2}+q^{4}+(3+\beta )q^{5}-q^{8}+(-3+\cdots)q^{10}+\cdots
2646.2.a.bk 2646.a 1.a 22 21.12821.128 Q(2)\Q(\sqrt{2}) None 2646.2.a.be 22 00 6-6 00 - - ++ SU(2)\mathrm{SU}(2) q+q2+q4+(3+β)q5+q8+(3+)q10+q+q^{2}+q^{4}+(-3+\beta )q^{5}+q^{8}+(-3+\cdots)q^{10}+\cdots
2646.2.a.bl 2646.a 1.a 22 21.12821.128 Q(7)\Q(\sqrt{7}) None 378.2.g.g 22 00 2-2 00 - ++ ++ SU(2)\mathrm{SU}(2) q+q2+q4+(1+β)q5+q8+(1+)q10+q+q^{2}+q^{4}+(-1+\beta )q^{5}+q^{8}+(-1+\cdots)q^{10}+\cdots
2646.2.a.bm 2646.a 1.a 22 21.12821.128 Q(2)\Q(\sqrt{2}) None 2646.2.a.bg 22 00 00 00 - - ++ SU(2)\mathrm{SU}(2) q+q2+q4+βq5+q8+βq10+(2+)q11+q+q^{2}+q^{4}+\beta q^{5}+q^{8}+\beta q^{10}+(-2+\cdots)q^{11}+\cdots
2646.2.a.bn 2646.a 1.a 22 21.12821.128 Q(2)\Q(\sqrt{2}) None 2646.2.a.bg 22 00 00 00 - ++ ++ SU(2)\mathrm{SU}(2) q+q2+q4+βq5+q8+βq10+(2+)q11+q+q^{2}+q^{4}+\beta q^{5}+q^{8}+\beta q^{10}+(-2+\cdots)q^{11}+\cdots
2646.2.a.bo 2646.a 1.a 22 21.12821.128 Q(7)\Q(\sqrt{7}) None 378.2.g.g 22 00 22 00 - - - SU(2)\mathrm{SU}(2) q+q2+q4+(1+β)q5+q8+(1+β)q10+q+q^{2}+q^{4}+(1+\beta )q^{5}+q^{8}+(1+\beta )q^{10}+\cdots
2646.2.a.bp 2646.a 1.a 22 21.12821.128 Q(2)\Q(\sqrt{2}) None 2646.2.a.be 22 00 66 00 - ++ ++ SU(2)\mathrm{SU}(2) q+q2+q4+(3+β)q5+q8+(3+β)q10+q+q^{2}+q^{4}+(3+\beta )q^{5}+q^{8}+(3+\beta )q^{10}+\cdots

Decomposition of S2old(Γ0(2646))S_{2}^{\mathrm{old}}(\Gamma_0(2646)) into lower level spaces

S2old(Γ0(2646)) S_{2}^{\mathrm{old}}(\Gamma_0(2646)) \simeq S2new(Γ0(14))S_{2}^{\mathrm{new}}(\Gamma_0(14))8^{\oplus 8}\oplusS2new(Γ0(21))S_{2}^{\mathrm{new}}(\Gamma_0(21))12^{\oplus 12}\oplusS2new(Γ0(27))S_{2}^{\mathrm{new}}(\Gamma_0(27))6^{\oplus 6}\oplusS2new(Γ0(42))S_{2}^{\mathrm{new}}(\Gamma_0(42))6^{\oplus 6}\oplusS2new(Γ0(49))S_{2}^{\mathrm{new}}(\Gamma_0(49))8^{\oplus 8}\oplusS2new(Γ0(54))S_{2}^{\mathrm{new}}(\Gamma_0(54))3^{\oplus 3}\oplusS2new(Γ0(63))S_{2}^{\mathrm{new}}(\Gamma_0(63))8^{\oplus 8}\oplusS2new(Γ0(98))S_{2}^{\mathrm{new}}(\Gamma_0(98))4^{\oplus 4}\oplusS2new(Γ0(126))S_{2}^{\mathrm{new}}(\Gamma_0(126))4^{\oplus 4}\oplusS2new(Γ0(147))S_{2}^{\mathrm{new}}(\Gamma_0(147))6^{\oplus 6}\oplusS2new(Γ0(189))S_{2}^{\mathrm{new}}(\Gamma_0(189))4^{\oplus 4}\oplusS2new(Γ0(294))S_{2}^{\mathrm{new}}(\Gamma_0(294))3^{\oplus 3}\oplusS2new(Γ0(378))S_{2}^{\mathrm{new}}(\Gamma_0(378))2^{\oplus 2}\oplusS2new(Γ0(441))S_{2}^{\mathrm{new}}(\Gamma_0(441))4^{\oplus 4}\oplusS2new(Γ0(882))S_{2}^{\mathrm{new}}(\Gamma_0(882))2^{\oplus 2}\oplusS2new(Γ0(1323))S_{2}^{\mathrm{new}}(\Gamma_0(1323))2^{\oplus 2}