Properties

Label 266.2
Level 266
Weight 2
Dimension 689
Nonzero newspaces 16
Newform subspaces 37
Sturm bound 8640
Trace bound 7

Downloads

Learn more

Defining parameters

Level: N N = 266=2719 266 = 2 \cdot 7 \cdot 19
Weight: k k = 2 2
Nonzero newspaces: 16 16
Newform subspaces: 37 37
Sturm bound: 86408640
Trace bound: 77

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(266))M_{2}(\Gamma_1(266)).

Total New Old
Modular forms 2376 689 1687
Cusp forms 1945 689 1256
Eisenstein series 431 0 431

Trace form

689q+3q2+8q3q4+6q5q7+3q8+11q9+6q10+12q114q1226q1315q1448q15q1630q1739q1867q1930q20+258q99+O(q100) 689 q + 3 q^{2} + 8 q^{3} - q^{4} + 6 q^{5} - q^{7} + 3 q^{8} + 11 q^{9} + 6 q^{10} + 12 q^{11} - 4 q^{12} - 26 q^{13} - 15 q^{14} - 48 q^{15} - q^{16} - 30 q^{17} - 39 q^{18} - 67 q^{19} - 30 q^{20}+ \cdots - 258 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(266))S_{2}^{\mathrm{new}}(\Gamma_1(266))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
266.2.a χ266(1,)\chi_{266}(1, \cdot) 266.2.a.a 2 1
266.2.a.b 2
266.2.a.c 2
266.2.a.d 3
266.2.d χ266(265,)\chi_{266}(265, \cdot) 266.2.d.a 16 1
266.2.e χ266(39,)\chi_{266}(39, \cdot) 266.2.e.a 2 2
266.2.e.b 2
266.2.e.c 4
266.2.e.d 6
266.2.e.e 10
266.2.f χ266(197,)\chi_{266}(197, \cdot) 266.2.f.a 2 2
266.2.f.b 4
266.2.f.c 6
266.2.f.d 8
266.2.g χ266(11,)\chi_{266}(11, \cdot) 266.2.g.a 2 2
266.2.g.b 10
266.2.g.c 12
266.2.h χ266(163,)\chi_{266}(163, \cdot) 266.2.h.a 2 2
266.2.h.b 10
266.2.h.c 12
266.2.k χ266(145,)\chi_{266}(145, \cdot) 266.2.k.a 4 2
266.2.k.b 20
266.2.l χ266(75,)\chi_{266}(75, \cdot) 266.2.l.a 24 2
266.2.m χ266(27,)\chi_{266}(27, \cdot) 266.2.m.a 32 2
266.2.t χ266(31,)\chi_{266}(31, \cdot) 266.2.t.a 4 2
266.2.t.b 20
266.2.u χ266(43,)\chi_{266}(43, \cdot) 266.2.u.a 6 6
266.2.u.b 12
266.2.u.c 18
266.2.u.d 24
266.2.v χ266(9,)\chi_{266}(9, \cdot) 266.2.v.a 42 6
266.2.v.b 42
266.2.w χ266(25,)\chi_{266}(25, \cdot) 266.2.w.a 42 6
266.2.w.b 42
266.2.x χ266(13,)\chi_{266}(13, \cdot) 266.2.x.a 72 6
266.2.y χ266(3,)\chi_{266}(3, \cdot) 266.2.y.a 84 6
266.2.bd χ266(33,)\chi_{266}(33, \cdot) 266.2.bd.a 84 6

Decomposition of S2old(Γ1(266))S_{2}^{\mathrm{old}}(\Gamma_1(266)) into lower level spaces