Properties

Label 2664.1.bg.a.1987.1
Level $2664$
Weight $1$
Character 2664.1987
Analytic conductor $1.330$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2664,1,Mod(787,2664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2664, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 2, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2664.787");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2664.bg (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.32950919365\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.7096896.2

Embedding invariants

Embedding label 1987.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2664.1987
Dual form 2664.1.bg.a.787.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -2.00000i q^{5} -1.00000 q^{6} +(0.866025 - 0.500000i) q^{7} +1.00000 q^{8} +1.00000 q^{9} -2.00000i q^{10} +(0.500000 - 0.866025i) q^{11} -1.00000 q^{12} +(0.866025 - 0.500000i) q^{14} +2.00000i q^{15} +1.00000 q^{16} +(0.500000 + 0.866025i) q^{17} +1.00000 q^{18} +(-0.500000 + 0.866025i) q^{19} -2.00000i q^{20} +(-0.866025 + 0.500000i) q^{21} +(0.500000 - 0.866025i) q^{22} +(-0.866025 + 0.500000i) q^{23} -1.00000 q^{24} -3.00000 q^{25} -1.00000 q^{27} +(0.866025 - 0.500000i) q^{28} +(0.866025 + 0.500000i) q^{29} +2.00000i q^{30} +(-0.866025 + 0.500000i) q^{31} +1.00000 q^{32} +(-0.500000 + 0.866025i) q^{33} +(0.500000 + 0.866025i) q^{34} +(-1.00000 - 1.73205i) q^{35} +1.00000 q^{36} -1.00000i q^{37} +(-0.500000 + 0.866025i) q^{38} -2.00000i q^{40} +(-0.866025 + 0.500000i) q^{42} +(-0.500000 + 0.866025i) q^{43} +(0.500000 - 0.866025i) q^{44} -2.00000i q^{45} +(-0.866025 + 0.500000i) q^{46} +(0.866025 + 0.500000i) q^{47} -1.00000 q^{48} -3.00000 q^{50} +(-0.500000 - 0.866025i) q^{51} +(0.866025 - 0.500000i) q^{53} -1.00000 q^{54} +(-1.73205 - 1.00000i) q^{55} +(0.866025 - 0.500000i) q^{56} +(0.500000 - 0.866025i) q^{57} +(0.866025 + 0.500000i) q^{58} +(-0.500000 + 0.866025i) q^{59} +2.00000i q^{60} +(-0.866025 + 0.500000i) q^{61} +(-0.866025 + 0.500000i) q^{62} +(0.866025 - 0.500000i) q^{63} +1.00000 q^{64} +(-0.500000 + 0.866025i) q^{66} +(0.500000 + 0.866025i) q^{68} +(0.866025 - 0.500000i) q^{69} +(-1.00000 - 1.73205i) q^{70} +(0.866025 + 0.500000i) q^{71} +1.00000 q^{72} -1.00000i q^{74} +3.00000 q^{75} +(-0.500000 + 0.866025i) q^{76} -1.00000i q^{77} +(-0.866025 + 0.500000i) q^{79} -2.00000i q^{80} +1.00000 q^{81} +(-0.866025 + 0.500000i) q^{84} +(1.73205 - 1.00000i) q^{85} +(-0.500000 + 0.866025i) q^{86} +(-0.866025 - 0.500000i) q^{87} +(0.500000 - 0.866025i) q^{88} +(-0.500000 - 0.866025i) q^{89} -2.00000i q^{90} +(-0.866025 + 0.500000i) q^{92} +(0.866025 - 0.500000i) q^{93} +(0.866025 + 0.500000i) q^{94} +(1.73205 + 1.00000i) q^{95} -1.00000 q^{96} +(0.500000 - 0.866025i) q^{97} +(0.500000 - 0.866025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{3} + 4 q^{4} - 4 q^{6} + 4 q^{8} + 4 q^{9} + 2 q^{11} - 4 q^{12} + 4 q^{16} + 2 q^{17} + 4 q^{18} - 2 q^{19} + 2 q^{22} - 4 q^{24} - 12 q^{25} - 4 q^{27} + 4 q^{32} - 2 q^{33} + 2 q^{34}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2664\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000
\(3\) −1.00000 −1.00000
\(4\) 1.00000 1.00000
\(5\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(6\) −1.00000 −1.00000
\(7\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) 1.00000 1.00000
\(9\) 1.00000 1.00000
\(10\) 2.00000i 2.00000i
\(11\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(12\) −1.00000 −1.00000
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0.866025 0.500000i 0.866025 0.500000i
\(15\) 2.00000i 2.00000i
\(16\) 1.00000 1.00000
\(17\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(18\) 1.00000 1.00000
\(19\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(20\) 2.00000i 2.00000i
\(21\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(22\) 0.500000 0.866025i 0.500000 0.866025i
\(23\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(24\) −1.00000 −1.00000
\(25\) −3.00000 −3.00000
\(26\) 0 0
\(27\) −1.00000 −1.00000
\(28\) 0.866025 0.500000i 0.866025 0.500000i
\(29\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(30\) 2.00000i 2.00000i
\(31\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.00000 1.00000
\(33\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(34\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(35\) −1.00000 1.73205i −1.00000 1.73205i
\(36\) 1.00000 1.00000
\(37\) 1.00000i 1.00000i
\(38\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(39\) 0 0
\(40\) 2.00000i 2.00000i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(43\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(44\) 0.500000 0.866025i 0.500000 0.866025i
\(45\) 2.00000i 2.00000i
\(46\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(47\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(48\) −1.00000 −1.00000
\(49\) 0 0
\(50\) −3.00000 −3.00000
\(51\) −0.500000 0.866025i −0.500000 0.866025i
\(52\) 0 0
\(53\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(54\) −1.00000 −1.00000
\(55\) −1.73205 1.00000i −1.73205 1.00000i
\(56\) 0.866025 0.500000i 0.866025 0.500000i
\(57\) 0.500000 0.866025i 0.500000 0.866025i
\(58\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(59\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(60\) 2.00000i 2.00000i
\(61\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(62\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(63\) 0.866025 0.500000i 0.866025 0.500000i
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(69\) 0.866025 0.500000i 0.866025 0.500000i
\(70\) −1.00000 1.73205i −1.00000 1.73205i
\(71\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(72\) 1.00000 1.00000
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 1.00000i 1.00000i
\(75\) 3.00000 3.00000
\(76\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(77\) 1.00000i 1.00000i
\(78\) 0 0
\(79\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(80\) 2.00000i 2.00000i
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(85\) 1.73205 1.00000i 1.73205 1.00000i
\(86\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(87\) −0.866025 0.500000i −0.866025 0.500000i
\(88\) 0.500000 0.866025i 0.500000 0.866025i
\(89\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(90\) 2.00000i 2.00000i
\(91\) 0 0
\(92\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(93\) 0.866025 0.500000i 0.866025 0.500000i
\(94\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(95\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(96\) −1.00000 −1.00000
\(97\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(98\) 0 0
\(99\) 0.500000 0.866025i 0.500000 0.866025i
\(100\) −3.00000 −3.00000
\(101\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) −0.500000 0.866025i −0.500000 0.866025i
\(103\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(106\) 0.866025 0.500000i 0.866025 0.500000i
\(107\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(108\) −1.00000 −1.00000
\(109\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(110\) −1.73205 1.00000i −1.73205 1.00000i
\(111\) 1.00000i 1.00000i
\(112\) 0.866025 0.500000i 0.866025 0.500000i
\(113\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(114\) 0.500000 0.866025i 0.500000 0.866025i
\(115\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(116\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(117\) 0 0
\(118\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(119\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(120\) 2.00000i 2.00000i
\(121\) 0 0
\(122\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(123\) 0 0
\(124\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(125\) 4.00000i 4.00000i
\(126\) 0.866025 0.500000i 0.866025 0.500000i
\(127\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(128\) 1.00000 1.00000
\(129\) 0.500000 0.866025i 0.500000 0.866025i
\(130\) 0 0
\(131\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(132\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(133\) 1.00000i 1.00000i
\(134\) 0 0
\(135\) 2.00000i 2.00000i
\(136\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(137\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(138\) 0.866025 0.500000i 0.866025 0.500000i
\(139\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(140\) −1.00000 1.73205i −1.00000 1.73205i
\(141\) −0.866025 0.500000i −0.866025 0.500000i
\(142\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(143\) 0 0
\(144\) 1.00000 1.00000
\(145\) 1.00000 1.73205i 1.00000 1.73205i
\(146\) 0 0
\(147\) 0 0
\(148\) 1.00000i 1.00000i
\(149\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(150\) 3.00000 3.00000
\(151\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(152\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(153\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(154\) 1.00000i 1.00000i
\(155\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(156\) 0 0
\(157\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(158\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(159\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(160\) 2.00000i 2.00000i
\(161\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(162\) 1.00000 1.00000
\(163\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(164\) 0 0
\(165\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(166\) 0 0
\(167\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(168\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(169\) 1.00000 1.00000
\(170\) 1.73205 1.00000i 1.73205 1.00000i
\(171\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(172\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) −0.866025 0.500000i −0.866025 0.500000i
\(175\) −2.59808 + 1.50000i −2.59808 + 1.50000i
\(176\) 0.500000 0.866025i 0.500000 0.866025i
\(177\) 0.500000 0.866025i 0.500000 0.866025i
\(178\) −0.500000 0.866025i −0.500000 0.866025i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 2.00000i 2.00000i
\(181\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0.866025 0.500000i 0.866025 0.500000i
\(184\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(185\) −2.00000 −2.00000
\(186\) 0.866025 0.500000i 0.866025 0.500000i
\(187\) 1.00000 1.00000
\(188\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(189\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(190\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(191\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) −1.00000 −1.00000
\(193\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(194\) 0.500000 0.866025i 0.500000 0.866025i
\(195\) 0 0
\(196\) 0 0
\(197\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(198\) 0.500000 0.866025i 0.500000 0.866025i
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −3.00000 −3.00000
\(201\) 0 0
\(202\) −0.866025 0.500000i −0.866025 0.500000i
\(203\) 1.00000 1.00000
\(204\) −0.500000 0.866025i −0.500000 0.866025i
\(205\) 0 0
\(206\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(207\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(208\) 0 0
\(209\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(210\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(211\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(212\) 0.866025 0.500000i 0.866025 0.500000i
\(213\) −0.866025 0.500000i −0.866025 0.500000i
\(214\) 0.500000 0.866025i 0.500000 0.866025i
\(215\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(216\) −1.00000 −1.00000
\(217\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(218\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(219\) 0 0
\(220\) −1.73205 1.00000i −1.73205 1.00000i
\(221\) 0 0
\(222\) 1.00000i 1.00000i
\(223\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(224\) 0.866025 0.500000i 0.866025 0.500000i
\(225\) −3.00000 −3.00000
\(226\) 0.500000 0.866025i 0.500000 0.866025i
\(227\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(228\) 0.500000 0.866025i 0.500000 0.866025i
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(231\) 1.00000i 1.00000i
\(232\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 1.00000 1.73205i 1.00000 1.73205i
\(236\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(237\) 0.866025 0.500000i 0.866025 0.500000i
\(238\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(239\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(240\) 2.00000i 2.00000i
\(241\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 0 0
\(243\) −1.00000 −1.00000
\(244\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(249\) 0 0
\(250\) 4.00000i 4.00000i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0.866025 0.500000i 0.866025 0.500000i
\(253\) 1.00000i 1.00000i
\(254\) 0.866025 0.500000i 0.866025 0.500000i
\(255\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(256\) 1.00000 1.00000
\(257\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(258\) 0.500000 0.866025i 0.500000 0.866025i
\(259\) −0.500000 0.866025i −0.500000 0.866025i
\(260\) 0 0
\(261\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(262\) 0.500000 0.866025i 0.500000 0.866025i
\(263\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(264\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(265\) −1.00000 1.73205i −1.00000 1.73205i
\(266\) 1.00000i 1.00000i
\(267\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 2.00000i 2.00000i
\(271\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(272\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(273\) 0 0
\(274\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(275\) −1.50000 + 2.59808i −1.50000 + 2.59808i
\(276\) 0.866025 0.500000i 0.866025 0.500000i
\(277\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(278\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(279\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(280\) −1.00000 1.73205i −1.00000 1.73205i
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) −0.866025 0.500000i −0.866025 0.500000i
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(285\) −1.73205 1.00000i −1.73205 1.00000i
\(286\) 0 0
\(287\) 0 0
\(288\) 1.00000 1.00000
\(289\) 0 0
\(290\) 1.00000 1.73205i 1.00000 1.73205i
\(291\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(296\) 1.00000i 1.00000i
\(297\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(298\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(299\) 0 0
\(300\) 3.00000 3.00000
\(301\) 1.00000i 1.00000i
\(302\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(303\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(304\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(305\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(306\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 1.00000i 1.00000i
\(309\) 0.866025 0.500000i 0.866025 0.500000i
\(310\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(311\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(314\) −0.866025 0.500000i −0.866025 0.500000i
\(315\) −1.00000 1.73205i −1.00000 1.73205i
\(316\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(319\) 0.866025 0.500000i 0.866025 0.500000i
\(320\) 2.00000i 2.00000i
\(321\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(322\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(323\) −1.00000 −1.00000
\(324\) 1.00000 1.00000
\(325\) 0 0
\(326\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(327\) 0.866025 0.500000i 0.866025 0.500000i
\(328\) 0 0
\(329\) 1.00000 1.00000
\(330\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 1.00000i 1.00000i
\(334\) 2.00000i 2.00000i
\(335\) 0 0
\(336\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 1.00000 1.00000
\(339\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(340\) 1.73205 1.00000i 1.73205 1.00000i
\(341\) 1.00000i 1.00000i
\(342\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(343\) 1.00000i 1.00000i
\(344\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(345\) −1.00000 1.73205i −1.00000 1.73205i
\(346\) 0 0
\(347\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) −0.866025 0.500000i −0.866025 0.500000i
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −2.59808 + 1.50000i −2.59808 + 1.50000i
\(351\) 0 0
\(352\) 0.500000 0.866025i 0.500000 0.866025i
\(353\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(354\) 0.500000 0.866025i 0.500000 0.866025i
\(355\) 1.00000 1.73205i 1.00000 1.73205i
\(356\) −0.500000 0.866025i −0.500000 0.866025i
\(357\) −0.866025 0.500000i −0.866025 0.500000i
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 2.00000i 2.00000i
\(361\) 0 0
\(362\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0.866025 0.500000i 0.866025 0.500000i
\(367\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(369\) 0 0
\(370\) −2.00000 −2.00000
\(371\) 0.500000 0.866025i 0.500000 0.866025i
\(372\) 0.866025 0.500000i 0.866025 0.500000i
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 1.00000 1.00000
\(375\) 4.00000i 4.00000i
\(376\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(377\) 0 0
\(378\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(379\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(380\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(381\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(382\) −0.866025 0.500000i −0.866025 0.500000i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) −1.00000 −1.00000
\(385\) −2.00000 −2.00000
\(386\) −0.500000 0.866025i −0.500000 0.866025i
\(387\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(388\) 0.500000 0.866025i 0.500000 0.866025i
\(389\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(390\) 0 0
\(391\) −0.866025 0.500000i −0.866025 0.500000i
\(392\) 0 0
\(393\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(394\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(395\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(396\) 0.500000 0.866025i 0.500000 0.866025i
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 1.00000i 1.00000i
\(400\) −3.00000 −3.00000
\(401\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.866025 0.500000i −0.866025 0.500000i
\(405\) 2.00000i 2.00000i
\(406\) 1.00000 1.00000
\(407\) −0.866025 0.500000i −0.866025 0.500000i
\(408\) −0.500000 0.866025i −0.500000 0.866025i
\(409\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0.500000 0.866025i 0.500000 0.866025i
\(412\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(413\) 1.00000i 1.00000i
\(414\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(415\) 0 0
\(416\) 0 0
\(417\) 0.500000 0.866025i 0.500000 0.866025i
\(418\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(419\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(420\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(421\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(422\) −0.500000 0.866025i −0.500000 0.866025i
\(423\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(424\) 0.866025 0.500000i 0.866025 0.500000i
\(425\) −1.50000 2.59808i −1.50000 2.59808i
\(426\) −0.866025 0.500000i −0.866025 0.500000i
\(427\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(428\) 0.500000 0.866025i 0.500000 0.866025i
\(429\) 0 0
\(430\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(431\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(432\) −1.00000 −1.00000
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(435\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(436\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(437\) 1.00000i 1.00000i
\(438\) 0 0
\(439\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(440\) −1.73205 1.00000i −1.73205 1.00000i
\(441\) 0 0
\(442\) 0 0
\(443\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(444\) 1.00000i 1.00000i
\(445\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(446\) −0.866025 0.500000i −0.866025 0.500000i
\(447\) 0.866025 0.500000i 0.866025 0.500000i
\(448\) 0.866025 0.500000i 0.866025 0.500000i
\(449\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(450\) −3.00000 −3.00000
\(451\) 0 0
\(452\) 0.500000 0.866025i 0.500000 0.866025i
\(453\) 0.866025 0.500000i 0.866025 0.500000i
\(454\) −0.500000 0.866025i −0.500000 0.866025i
\(455\) 0 0
\(456\) 0.500000 0.866025i 0.500000 0.866025i
\(457\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) −0.500000 0.866025i −0.500000 0.866025i
\(460\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(461\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 1.00000i 1.00000i
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(465\) −1.00000 1.73205i −1.00000 1.73205i
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1.00000 1.73205i 1.00000 1.73205i
\(471\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(472\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(473\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(474\) 0.866025 0.500000i 0.866025 0.500000i
\(475\) 1.50000 2.59808i 1.50000 2.59808i
\(476\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(477\) 0.866025 0.500000i 0.866025 0.500000i
\(478\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 2.00000i 2.00000i
\(481\) 0 0
\(482\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(483\) 0.500000 0.866025i 0.500000 0.866025i
\(484\) 0 0
\(485\) −1.73205 1.00000i −1.73205 1.00000i
\(486\) −1.00000 −1.00000
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(489\) −0.500000 0.866025i −0.500000 0.866025i
\(490\) 0 0
\(491\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0 0
\(493\) 1.00000i 1.00000i
\(494\) 0 0
\(495\) −1.73205 1.00000i −1.73205 1.00000i
\(496\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(497\) 1.00000 1.00000
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 4.00000i 4.00000i
\(501\) 2.00000i 2.00000i
\(502\) 0 0
\(503\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(504\) 0.866025 0.500000i 0.866025 0.500000i
\(505\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(506\) 1.00000i 1.00000i
\(507\) −1.00000 −1.00000
\(508\) 0.866025 0.500000i 0.866025 0.500000i
\(509\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(510\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0.500000 0.866025i 0.500000 0.866025i
\(514\) 0.500000 0.866025i 0.500000 0.866025i
\(515\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(516\) 0.500000 0.866025i 0.500000 0.866025i
\(517\) 0.866025 0.500000i 0.866025 0.500000i
\(518\) −0.500000 0.866025i −0.500000 0.866025i
\(519\) 0 0
\(520\) 0 0
\(521\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(522\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(523\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(524\) 0.500000 0.866025i 0.500000 0.866025i
\(525\) 2.59808 1.50000i 2.59808 1.50000i
\(526\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(527\) −0.866025 0.500000i −0.866025 0.500000i
\(528\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(529\) 0 0
\(530\) −1.00000 1.73205i −1.00000 1.73205i
\(531\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(532\) 1.00000i 1.00000i
\(533\) 0 0
\(534\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(535\) −1.73205 1.00000i −1.73205 1.00000i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 2.00000i 2.00000i
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0.866025 0.500000i 0.866025 0.500000i
\(543\) −0.866025 0.500000i −0.866025 0.500000i
\(544\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(545\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(546\) 0 0
\(547\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(548\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(549\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(550\) −1.50000 + 2.59808i −1.50000 + 2.59808i
\(551\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(552\) 0.866025 0.500000i 0.866025 0.500000i
\(553\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(554\) 0.866025 0.500000i 0.866025 0.500000i
\(555\) 2.00000 2.00000
\(556\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(557\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(558\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(559\) 0 0
\(560\) −1.00000 1.73205i −1.00000 1.73205i
\(561\) −1.00000 −1.00000
\(562\) 0 0
\(563\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(564\) −0.866025 0.500000i −0.866025 0.500000i
\(565\) −1.73205 1.00000i −1.73205 1.00000i
\(566\) 0 0
\(567\) 0.866025 0.500000i 0.866025 0.500000i
\(568\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(569\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(570\) −1.73205 1.00000i −1.73205 1.00000i
\(571\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(574\) 0 0
\(575\) 2.59808 1.50000i 2.59808 1.50000i
\(576\) 1.00000 1.00000
\(577\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(580\) 1.00000 1.73205i 1.00000 1.73205i
\(581\) 0 0
\(582\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(583\) 1.00000i 1.00000i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 1.00000i 1.00000i
\(590\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(591\) 0.866025 0.500000i 0.866025 0.500000i
\(592\) 1.00000i 1.00000i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(595\) 1.00000 1.73205i 1.00000 1.73205i
\(596\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(597\) 0 0
\(598\) 0 0
\(599\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(600\) 3.00000 3.00000
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 1.00000i 1.00000i
\(603\) 0 0
\(604\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(605\) 0 0
\(606\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(607\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(609\) −1.00000 −1.00000
\(610\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(611\) 0 0
\(612\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(613\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 1.00000i 1.00000i
\(617\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(618\) 0.866025 0.500000i 0.866025 0.500000i
\(619\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(620\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(621\) 0.866025 0.500000i 0.866025 0.500000i
\(622\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(623\) −0.866025 0.500000i −0.866025 0.500000i
\(624\) 0 0
\(625\) 5.00000 5.00000
\(626\) 2.00000 2.00000
\(627\) −0.500000 0.866025i −0.500000 0.866025i
\(628\) −0.866025 0.500000i −0.866025 0.500000i
\(629\) 0.866025 0.500000i 0.866025 0.500000i
\(630\) −1.00000 1.73205i −1.00000 1.73205i
\(631\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(632\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(633\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(634\) 0 0
\(635\) −1.00000 1.73205i −1.00000 1.73205i
\(636\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(637\) 0 0
\(638\) 0.866025 0.500000i 0.866025 0.500000i
\(639\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(640\) 2.00000i 2.00000i
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(643\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(645\) −1.73205 1.00000i −1.73205 1.00000i
\(646\) −1.00000 −1.00000
\(647\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 1.00000 1.00000
\(649\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(650\) 0 0
\(651\) 0.500000 0.866025i 0.500000 0.866025i
\(652\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0.866025 0.500000i 0.866025 0.500000i
\(655\) −1.73205 1.00000i −1.73205 1.00000i
\(656\) 0 0
\(657\) 0 0
\(658\) 1.00000 1.00000
\(659\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(660\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(661\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.00000 2.00000
\(666\) 1.00000i 1.00000i
\(667\) −1.00000 −1.00000
\(668\) 2.00000i 2.00000i
\(669\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(670\) 0 0
\(671\) 1.00000i 1.00000i
\(672\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(673\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(674\) 0 0
\(675\) 3.00000 3.00000
\(676\) 1.00000 1.00000
\(677\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(678\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(679\) 1.00000i 1.00000i
\(680\) 1.73205 1.00000i 1.73205 1.00000i
\(681\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(682\) 1.00000i 1.00000i
\(683\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(684\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(685\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(686\) 1.00000i 1.00000i
\(687\) 0 0
\(688\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(689\) 0 0
\(690\) −1.00000 1.73205i −1.00000 1.73205i
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 1.00000i 1.00000i
\(694\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(695\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(696\) −0.866025 0.500000i −0.866025 0.500000i
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −2.59808 + 1.50000i −2.59808 + 1.50000i
\(701\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(704\) 0.500000 0.866025i 0.500000 0.866025i
\(705\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(706\) −2.00000 −2.00000
\(707\) −1.00000 −1.00000
\(708\) 0.500000 0.866025i 0.500000 0.866025i
\(709\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(710\) 1.00000 1.73205i 1.00000 1.73205i
\(711\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(712\) −0.500000 0.866025i −0.500000 0.866025i
\(713\) 0.500000 0.866025i 0.500000 0.866025i
\(714\) −0.866025 0.500000i −0.866025 0.500000i
\(715\) 0 0
\(716\) 0 0
\(717\) −0.866025 0.500000i −0.866025 0.500000i
\(718\) 0 0
\(719\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(720\) 2.00000i 2.00000i
\(721\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(722\) 0 0
\(723\) −0.500000 0.866025i −0.500000 0.866025i
\(724\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(725\) −2.59808 1.50000i −2.59808 1.50000i
\(726\) 0 0
\(727\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) −1.00000 −1.00000
\(732\) 0.866025 0.500000i 0.866025 0.500000i
\(733\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(734\) 0.866025 0.500000i 0.866025 0.500000i
\(735\) 0 0
\(736\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) −2.00000 −2.00000
\(741\) 0 0
\(742\) 0.500000 0.866025i 0.500000 0.866025i
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0.866025 0.500000i 0.866025 0.500000i
\(745\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(746\) 0 0
\(747\) 0 0
\(748\) 1.00000 1.00000
\(749\) 1.00000i 1.00000i
\(750\) 4.00000i 4.00000i
\(751\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(752\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(753\) 0 0
\(754\) 0 0
\(755\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(756\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(757\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(758\) −0.500000 0.866025i −0.500000 0.866025i
\(759\) 1.00000i 1.00000i
\(760\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(761\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(762\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(763\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(764\) −0.866025 0.500000i −0.866025 0.500000i
\(765\) 1.73205 1.00000i 1.73205 1.00000i
\(766\) 0 0
\(767\) 0 0
\(768\) −1.00000 −1.00000
\(769\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(770\) −2.00000 −2.00000
\(771\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(772\) −0.500000 0.866025i −0.500000 0.866025i
\(773\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(774\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(775\) 2.59808 1.50000i 2.59808 1.50000i
\(776\) 0.500000 0.866025i 0.500000 0.866025i
\(777\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(778\) 0.866025 0.500000i 0.866025 0.500000i
\(779\) 0 0
\(780\) 0 0
\(781\) 0.866025 0.500000i 0.866025 0.500000i
\(782\) −0.866025 0.500000i −0.866025 0.500000i
\(783\) −0.866025 0.500000i −0.866025 0.500000i
\(784\) 0 0
\(785\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(786\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(787\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(788\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(789\) 0.866025 0.500000i 0.866025 0.500000i
\(790\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(791\) 1.00000i 1.00000i
\(792\) 0.500000 0.866025i 0.500000 0.866025i
\(793\) 0 0
\(794\) 0 0
\(795\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(796\) 0 0
\(797\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(798\) 1.00000i 1.00000i
\(799\) 1.00000i 1.00000i
\(800\) −3.00000 −3.00000
\(801\) −0.500000 0.866025i −0.500000 0.866025i
\(802\) −0.500000 0.866025i −0.500000 0.866025i
\(803\) 0 0
\(804\) 0 0
\(805\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(806\) 0 0
\(807\) 0 0
\(808\) −0.866025 0.500000i −0.866025 0.500000i
\(809\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(810\) 2.00000i 2.00000i
\(811\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(812\) 1.00000 1.00000
\(813\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(814\) −0.866025 0.500000i −0.866025 0.500000i
\(815\) 1.73205 1.00000i 1.73205 1.00000i
\(816\) −0.500000 0.866025i −0.500000 0.866025i
\(817\) −0.500000 0.866025i −0.500000 0.866025i
\(818\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(819\) 0 0
\(820\) 0 0
\(821\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(822\) 0.500000 0.866025i 0.500000 0.866025i
\(823\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(824\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(825\) 1.50000 2.59808i 1.50000 2.59808i
\(826\) 1.00000i 1.00000i
\(827\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(828\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(829\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(830\) 0 0
\(831\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(832\) 0 0
\(833\) 0 0
\(834\) 0.500000 0.866025i 0.500000 0.866025i
\(835\) −4.00000 −4.00000
\(836\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(837\) 0.866025 0.500000i 0.866025 0.500000i
\(838\) 0.500000 0.866025i 0.500000 0.866025i
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(841\) 0 0
\(842\) −0.866025 0.500000i −0.866025 0.500000i
\(843\) 0 0
\(844\) −0.500000 0.866025i −0.500000 0.866025i
\(845\) 2.00000i 2.00000i
\(846\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(847\) 0 0
\(848\) 0.866025 0.500000i 0.866025 0.500000i
\(849\) 0 0
\(850\) −1.50000 2.59808i −1.50000 2.59808i
\(851\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(852\) −0.866025 0.500000i −0.866025 0.500000i
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(855\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(856\) 0.500000 0.866025i 0.500000 0.866025i
\(857\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(860\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(861\) 0 0
\(862\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(863\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(864\) −1.00000 −1.00000
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(869\) 1.00000i 1.00000i
\(870\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(871\) 0 0
\(872\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(873\) 0.500000 0.866025i 0.500000 0.866025i
\(874\) 1.00000i 1.00000i
\(875\) 2.00000 + 3.46410i 2.00000 + 3.46410i
\(876\) 0 0
\(877\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(878\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(879\) 0 0
\(880\) −1.73205 1.00000i −1.73205 1.00000i
\(881\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(882\) 0 0
\(883\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(884\) 0 0
\(885\) −1.73205 1.00000i −1.73205 1.00000i
\(886\) 0.500000 0.866025i 0.500000 0.866025i
\(887\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 1.00000i 1.00000i
\(889\) 0.500000 0.866025i 0.500000 0.866025i
\(890\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(891\) 0.500000 0.866025i 0.500000 0.866025i
\(892\) −0.866025 0.500000i −0.866025 0.500000i
\(893\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(894\) 0.866025 0.500000i 0.866025 0.500000i
\(895\) 0 0
\(896\) 0.866025 0.500000i 0.866025 0.500000i
\(897\) 0 0
\(898\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(899\) −1.00000 −1.00000
\(900\) −3.00000 −3.00000
\(901\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(902\) 0 0
\(903\) 1.00000i 1.00000i
\(904\) 0.500000 0.866025i 0.500000 0.866025i
\(905\) 1.00000 1.73205i 1.00000 1.73205i
\(906\) 0.866025 0.500000i 0.866025 0.500000i
\(907\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(908\) −0.500000 0.866025i −0.500000 0.866025i
\(909\) −0.866025 0.500000i −0.866025 0.500000i
\(910\) 0 0
\(911\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(912\) 0.500000 0.866025i 0.500000 0.866025i
\(913\) 0 0
\(914\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(915\) −1.00000 1.73205i −1.00000 1.73205i
\(916\) 0 0
\(917\) 1.00000i 1.00000i
\(918\) −0.500000 0.866025i −0.500000 0.866025i
\(919\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(920\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(921\) 0 0
\(922\) 2.00000i 2.00000i
\(923\) 0 0
\(924\) 1.00000i 1.00000i
\(925\) 3.00000i 3.00000i
\(926\) 0 0
\(927\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(928\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(929\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(930\) −1.00000 1.73205i −1.00000 1.73205i
\(931\) 0 0
\(932\) 0 0
\(933\) −0.866025 0.500000i −0.866025 0.500000i
\(934\) 0 0
\(935\) 2.00000i 2.00000i
\(936\) 0 0
\(937\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) 0 0
\(939\) −2.00000 −2.00000
\(940\) 1.00000 1.73205i 1.00000 1.73205i
\(941\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(942\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(943\) 0 0
\(944\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(945\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(946\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0.866025 0.500000i 0.866025 0.500000i
\(949\) 0 0
\(950\) 1.50000 2.59808i 1.50000 2.59808i
\(951\) 0 0
\(952\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(953\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(954\) 0.866025 0.500000i 0.866025 0.500000i
\(955\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(956\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(957\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(958\) 0 0
\(959\) 1.00000i 1.00000i
\(960\) 2.00000i 2.00000i
\(961\) 0 0
\(962\) 0 0
\(963\) 0.500000 0.866025i 0.500000 0.866025i
\(964\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(965\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(966\) 0.500000 0.866025i 0.500000 0.866025i
\(967\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 1.00000 1.00000
\(970\) −1.73205 1.00000i −1.73205 1.00000i
\(971\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(972\) −1.00000 −1.00000
\(973\) 1.00000i 1.00000i
\(974\) 0 0
\(975\) 0 0
\(976\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(977\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(978\) −0.500000 0.866025i −0.500000 0.866025i
\(979\) −1.00000 −1.00000
\(980\) 0 0
\(981\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(982\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(983\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(984\) 0 0
\(985\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(986\) 1.00000i 1.00000i
\(987\) −1.00000 −1.00000
\(988\) 0 0
\(989\) 1.00000i 1.00000i
\(990\) −1.73205 1.00000i −1.73205 1.00000i
\(991\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(992\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(993\) 0 0
\(994\) 1.00000 1.00000
\(995\) 0 0
\(996\) 0 0
\(997\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 1.00000i 1.00000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2664.1.bg.a.1987.1 yes 4
8.3 odd 2 inner 2664.1.bg.a.1987.2 yes 4
9.4 even 3 2664.1.cg.a.211.1 yes 4
37.10 even 3 2664.1.cg.a.2563.2 yes 4
72.67 odd 6 2664.1.cg.a.211.2 yes 4
296.195 odd 6 2664.1.cg.a.2563.1 yes 4
333.121 even 3 inner 2664.1.bg.a.787.1 4
2664.787 odd 6 inner 2664.1.bg.a.787.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2664.1.bg.a.787.1 4 333.121 even 3 inner
2664.1.bg.a.787.2 yes 4 2664.787 odd 6 inner
2664.1.bg.a.1987.1 yes 4 1.1 even 1 trivial
2664.1.bg.a.1987.2 yes 4 8.3 odd 2 inner
2664.1.cg.a.211.1 yes 4 9.4 even 3
2664.1.cg.a.211.2 yes 4 72.67 odd 6
2664.1.cg.a.2563.1 yes 4 296.195 odd 6
2664.1.cg.a.2563.2 yes 4 37.10 even 3