Properties

Label 2664.2.bc
Level $2664$
Weight $2$
Character orbit 2664.bc
Rep. character $\chi_{2664}(529,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $228$
Sturm bound $912$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2664.bc (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 333 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(912\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2664, [\chi])\).

Total New Old
Modular forms 928 228 700
Cusp forms 896 228 668
Eisenstein series 32 0 32

Trace form

\( 228 q - 12 q^{11} + 18 q^{15} - 228 q^{25} - 18 q^{27} + 18 q^{31} + 18 q^{35} - 32 q^{41} + 18 q^{43} + 18 q^{45} - 114 q^{49} + 18 q^{51} - 6 q^{53} - 42 q^{57} - 40 q^{63} - 32 q^{65} + 8 q^{71} + 16 q^{75}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2664, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2664, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2664, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(333, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(666, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1332, [\chi])\)\(^{\oplus 2}\)