Properties

Label 2664.2.do
Level $2664$
Weight $2$
Character orbit 2664.do
Rep. character $\chi_{2664}(103,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $0$
Newform subspaces $0$
Sturm bound $912$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2664.do (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1332 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 0 \)
Sturm bound: \(912\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2664, [\chi])\).

Total New Old
Modular forms 1856 0 1856
Cusp forms 1792 0 1792
Eisenstein series 64 0 64

Decomposition of \(S_{2}^{\mathrm{old}}(2664, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2664, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1332, [\chi])\)\(^{\oplus 2}\)