Properties

Label 2664.2.fk
Level $2664$
Weight $2$
Character orbit 2664.fk
Rep. character $\chi_{2664}(215,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $0$
Newform subspaces $0$
Sturm bound $912$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2664.fk (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 444 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 0 \)
Sturm bound: \(912\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2664, [\chi])\).

Total New Old
Modular forms 2832 0 2832
Cusp forms 2640 0 2640
Eisenstein series 192 0 192

Decomposition of \(S_{2}^{\mathrm{old}}(2664, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2664, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(444, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1332, [\chi])\)\(^{\oplus 2}\)