Properties

Label 269.8.a
Level $269$
Weight $8$
Character orbit 269.a
Rep. character $\chi_{269}(1,\cdot)$
Character field $\Q$
Dimension $157$
Newform subspaces $2$
Sturm bound $180$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 269 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 269.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(180\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(269))\).

Total New Old
Modular forms 159 157 2
Cusp forms 157 157 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(269\)Dim
\(+\)\(84\)
\(-\)\(73\)

Trace form

\( 157 q + 6 q^{2} - 28 q^{3} + 10046 q^{4} + 2 q^{5} - 580 q^{6} - 1350 q^{7} - 1320 q^{8} + 118117 q^{9} - 5618 q^{10} + 6640 q^{11} + 9960 q^{12} + 7010 q^{13} + 9096 q^{14} - 29594 q^{15} + 610998 q^{16}+ \cdots + 6370756 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(269))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 269
269.8.a.a 269.a 1.a $73$ $84.032$ None 269.8.a.a \(-17\) \(-203\) \(-499\) \(-5477\) $-$ $\mathrm{SU}(2)$
269.8.a.b 269.a 1.a $84$ $84.032$ None 269.8.a.b \(23\) \(175\) \(501\) \(4127\) $+$ $\mathrm{SU}(2)$