Defining parameters
Level: | \( N \) | \(=\) | \( 269 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 269.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(180\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(269))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 159 | 157 | 2 |
Cusp forms | 157 | 157 | 0 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(269\) | Dim |
---|---|
\(+\) | \(84\) |
\(-\) | \(73\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(269))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 269 | |||||||
269.8.a.a | $73$ | $84.032$ | None | \(-17\) | \(-203\) | \(-499\) | \(-5477\) | $-$ | |||
269.8.a.b | $84$ | $84.032$ | None | \(23\) | \(175\) | \(501\) | \(4127\) | $+$ |