Properties

Label 27.7.f
Level $27$
Weight $7$
Character orbit 27.f
Rep. character $\chi_{27}(2,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $102$
Newform subspaces $1$
Sturm bound $21$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 27.f (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(21\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(27, [\chi])\).

Total New Old
Modular forms 114 114 0
Cusp forms 102 102 0
Eisenstein series 12 12 0

Trace form

\( 102 q - 6 q^{2} - 6 q^{3} - 6 q^{4} + 210 q^{5} - 342 q^{6} - 6 q^{7} - 9 q^{8} + 1242 q^{9} - 3 q^{10} - 492 q^{11} + 3549 q^{12} - 6 q^{13} - 12183 q^{14} - 7974 q^{15} - 198 q^{16} - 9 q^{17} + 40995 q^{18}+ \cdots + 1743822 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(27, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
27.7.f.a 27.f 27.f $102$ $6.211$ None 27.7.f.a \(-6\) \(-6\) \(210\) \(-6\) $\mathrm{SU}(2)[C_{18}]$