Properties

Label 270.2.m
Level 270270
Weight 22
Character orbit 270.m
Rep. character χ270(17,)\chi_{270}(17,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 2424
Newform subspaces 22
Sturm bound 108108
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 270=2335 270 = 2 \cdot 3^{3} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 270.m (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 45 45
Character field: Q(ζ12)\Q(\zeta_{12})
Newform subspaces: 2 2
Sturm bound: 108108
Trace bound: 11
Distinguishing TpT_p: 77

Dimensions

The following table gives the dimensions of various subspaces of M2(270,[χ])M_{2}(270, [\chi]).

Total New Old
Modular forms 264 24 240
Cusp forms 168 24 144
Eisenstein series 96 0 96

Trace form

24q+24q11+12q16+12q20+24q2312q2524q3736q3836q4124q4648q4748q5024q5512q56+12q5812q61+24q6512q67+36q97+O(q100) 24 q + 24 q^{11} + 12 q^{16} + 12 q^{20} + 24 q^{23} - 12 q^{25} - 24 q^{37} - 36 q^{38} - 36 q^{41} - 24 q^{46} - 48 q^{47} - 48 q^{50} - 24 q^{55} - 12 q^{56} + 12 q^{58} - 12 q^{61} + 24 q^{65} - 12 q^{67}+ \cdots - 36 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(270,[χ])S_{2}^{\mathrm{new}}(270, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
270.2.m.a 270.m 45.l 88 2.1562.156 Q(ζ24)\Q(\zeta_{24}) None 90.2.l.a 00 00 12-12 8-8 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+ζ247q2ζ242q4+(1+ζ243+)q5+q+\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(-1+\zeta_{24}^{3}+\cdots)q^{5}+\cdots
270.2.m.b 270.m 45.l 1616 2.1562.156 16.0.\cdots.9 None 90.2.l.b 00 00 1212 88 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+β5q2β6q4+(β2+β4+β5+)q5+q+\beta _{5}q^{2}-\beta _{6}q^{4}+(-\beta _{2}+\beta _{4}+\beta _{5}+\cdots)q^{5}+\cdots

Decomposition of S2old(270,[χ])S_{2}^{\mathrm{old}}(270, [\chi]) into lower level spaces

S2old(270,[χ]) S_{2}^{\mathrm{old}}(270, [\chi]) \simeq S2new(45,[χ])S_{2}^{\mathrm{new}}(45, [\chi])4^{\oplus 4}\oplusS2new(90,[χ])S_{2}^{\mathrm{new}}(90, [\chi])2^{\oplus 2}\oplusS2new(135,[χ])S_{2}^{\mathrm{new}}(135, [\chi])2^{\oplus 2}