Properties

Label 270.2.m
Level $270$
Weight $2$
Character orbit 270.m
Rep. character $\chi_{270}(17,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $24$
Newform subspaces $2$
Sturm bound $108$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.m (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 2 \)
Sturm bound: \(108\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(270, [\chi])\).

Total New Old
Modular forms 264 24 240
Cusp forms 168 24 144
Eisenstein series 96 0 96

Trace form

\( 24 q + 24 q^{11} + 12 q^{16} + 12 q^{20} + 24 q^{23} - 12 q^{25} - 24 q^{37} - 36 q^{38} - 36 q^{41} - 24 q^{46} - 48 q^{47} - 48 q^{50} - 24 q^{55} - 12 q^{56} + 12 q^{58} - 12 q^{61} + 24 q^{65} - 12 q^{67}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(270, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
270.2.m.a 270.m 45.l $8$ $2.156$ \(\Q(\zeta_{24})\) None 90.2.l.a \(0\) \(0\) \(-12\) \(-8\) $\mathrm{SU}(2)[C_{12}]$ \(q+\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(-1+\zeta_{24}^{3}+\cdots)q^{5}+\cdots\)
270.2.m.b 270.m 45.l $16$ $2.156$ 16.0.\(\cdots\).9 None 90.2.l.b \(0\) \(0\) \(12\) \(8\) $\mathrm{SU}(2)[C_{12}]$ \(q+\beta _{5}q^{2}-\beta _{6}q^{4}+(-\beta _{2}+\beta _{4}+\beta _{5}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(270, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(270, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)