Defining parameters
Level: | \( N \) | \(=\) | \( 270 = 2 \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 270.m (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 45 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(270, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 264 | 24 | 240 |
Cusp forms | 168 | 24 | 144 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(270, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
270.2.m.a | $8$ | $2.156$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(-12\) | \(-8\) | \(q+\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(-1+\zeta_{24}^{3}+\cdots)q^{5}+\cdots\) |
270.2.m.b | $16$ | $2.156$ | 16.0.\(\cdots\).9 | None | \(0\) | \(0\) | \(12\) | \(8\) | \(q+\beta _{5}q^{2}-\beta _{6}q^{4}+(-\beta _{2}+\beta _{4}+\beta _{5}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(270, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(270, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)