Properties

Label 2700.2.bf
Level $2700$
Weight $2$
Character orbit 2700.bf
Rep. character $\chi_{2700}(557,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $72$
Newform subspaces $6$
Sturm bound $1080$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.bf (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 6 \)
Sturm bound: \(1080\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2700, [\chi])\).

Total New Old
Modular forms 2376 72 2304
Cusp forms 1944 72 1872
Eisenstein series 432 0 432

Trace form

\( 72 q + 24 q^{11} - 24 q^{23} - 12 q^{37} - 72 q^{41} - 42 q^{47} + 24 q^{61} - 6 q^{67} + 96 q^{77} + 60 q^{83} + 48 q^{91} + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2700, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2700.2.bf.a 2700.bf 45.l $4$ $21.560$ \(\Q(\zeta_{12})\) None 900.2.be.a \(0\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-2-2\zeta_{12}+\zeta_{12}^{2}+\zeta_{12}^{3})q^{7}+\cdots\)
2700.2.bf.b 2700.bf 45.l $4$ $21.560$ \(\Q(\zeta_{12})\) None 900.2.be.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1-\zeta_{12}+2\zeta_{12}^{2}-\zeta_{12}^{3})q^{7}+\cdots\)
2700.2.bf.c 2700.bf 45.l $4$ $21.560$ \(\Q(\zeta_{12})\) None 900.2.be.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1+\zeta_{12}-2\zeta_{12}^{2}+\zeta_{12}^{3})q^{7}+(1+\cdots)q^{11}+\cdots\)
2700.2.bf.d 2700.bf 45.l $4$ $21.560$ \(\Q(\zeta_{12})\) None 900.2.be.a \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{12}]$ \(q+(2+2\zeta_{12}-\zeta_{12}^{2}-\zeta_{12}^{3})q^{7}+(1+\cdots)q^{11}+\cdots\)
2700.2.bf.e 2700.bf 45.l $24$ $21.560$ None 180.2.w.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$
2700.2.bf.f 2700.bf 45.l $32$ $21.560$ None 900.2.be.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(2700, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2700, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(540, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1350, [\chi])\)\(^{\oplus 2}\)