Defining parameters
Level: | \( N \) | \(=\) | \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2700.bf (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 45 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(1080\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2700, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2376 | 72 | 2304 |
Cusp forms | 1944 | 72 | 1872 |
Eisenstein series | 432 | 0 | 432 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2700, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
2700.2.bf.a | $4$ | $21.560$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(-6\) | \(q+(-2-2\zeta_{12}+\zeta_{12}^{2}+\zeta_{12}^{3})q^{7}+\cdots\) |
2700.2.bf.b | $4$ | $21.560$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-1-\zeta_{12}+2\zeta_{12}^{2}-\zeta_{12}^{3})q^{7}+\cdots\) |
2700.2.bf.c | $4$ | $21.560$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(1+\zeta_{12}-2\zeta_{12}^{2}+\zeta_{12}^{3})q^{7}+(1+\cdots)q^{11}+\cdots\) |
2700.2.bf.d | $4$ | $21.560$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(6\) | \(q+(2+2\zeta_{12}-\zeta_{12}^{2}-\zeta_{12}^{3})q^{7}+(1+\cdots)q^{11}+\cdots\) |
2700.2.bf.e | $24$ | $21.560$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
2700.2.bf.f | $32$ | $21.560$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(2700, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2700, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(540, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1350, [\chi])\)\(^{\oplus 2}\)