Defining parameters
Level: | \( N \) | \(=\) | \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2700.bs (of order \(20\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 75 \) |
Character field: | \(\Q(\zeta_{20})\) | ||
Sturm bound: | \(1080\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2700, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4464 | 320 | 4144 |
Cusp forms | 4176 | 320 | 3856 |
Eisenstein series | 288 | 0 | 288 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2700, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2700, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2700, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1350, [\chi])\)\(^{\oplus 2}\)