Properties

Label 2700.2.bs
Level $2700$
Weight $2$
Character orbit 2700.bs
Rep. character $\chi_{2700}(53,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $320$
Sturm bound $1080$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.bs (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 75 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(1080\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2700, [\chi])\).

Total New Old
Modular forms 4464 320 4144
Cusp forms 4176 320 3856
Eisenstein series 288 0 288

Trace form

\( 320 q + 4 q^{7} - 12 q^{13} + 20 q^{19} - 8 q^{25} - 24 q^{37} - 36 q^{43} - 12 q^{55} - 24 q^{67} + 28 q^{73} - 40 q^{79} + 44 q^{85} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2700, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2700, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2700, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1350, [\chi])\)\(^{\oplus 2}\)