Properties

Label 272.2.bd
Level 272272
Weight 22
Character orbit 272.bd
Rep. character χ272(3,)\chi_{272}(3,\cdot)
Character field Q(ζ16)\Q(\zeta_{16})
Dimension 272272
Newform subspaces 11
Sturm bound 7272
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 272=2417 272 = 2^{4} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 272.bd (of order 1616 and degree 88)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 272 272
Character field: Q(ζ16)\Q(\zeta_{16})
Newform subspaces: 1 1
Sturm bound: 7272
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(272,[χ])M_{2}(272, [\chi]).

Total New Old
Modular forms 304 304 0
Cusp forms 272 272 0
Eisenstein series 32 32 0

Trace form

272q8q28q38q48q524q616q78q88q108q11+16q128q1416q1716q18+24q19+24q208q2216q23+8q24++16q99+O(q100) 272 q - 8 q^{2} - 8 q^{3} - 8 q^{4} - 8 q^{5} - 24 q^{6} - 16 q^{7} - 8 q^{8} - 8 q^{10} - 8 q^{11} + 16 q^{12} - 8 q^{14} - 16 q^{17} - 16 q^{18} + 24 q^{19} + 24 q^{20} - 8 q^{22} - 16 q^{23} + 8 q^{24}+ \cdots + 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(272,[χ])S_{2}^{\mathrm{new}}(272, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
272.2.bd.a 272.bd 272.ad 272272 2.1722.172 None 272.2.bd.a 8-8 8-8 8-8 16-16 SU(2)[C16]\mathrm{SU}(2)[C_{16}]