Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M4(Γ0(272)).
|
Total |
New |
Old |
Modular forms
| 114 |
24 |
90 |
Cusp forms
| 102 |
24 |
78 |
Eisenstein series
| 12 |
0 |
12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 17 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 31 | 7 | 24 | | 28 | 7 | 21 | | 3 | 0 | 3 |
+ | − | − | | 27 | 5 | 22 | | 24 | 5 | 19 | | 3 | 0 | 3 |
− | + | − | | 26 | 5 | 21 | | 23 | 5 | 18 | | 3 | 0 | 3 |
− | − | + | | 30 | 7 | 23 | | 27 | 7 | 20 | | 3 | 0 | 3 |
Plus space | + | | 61 | 14 | 47 | | 55 | 14 | 41 | | 6 | 0 | 6 |
Minus space | − | | 53 | 10 | 43 | | 47 | 10 | 37 | | 6 | 0 | 6 |
Decomposition of S4new(Γ0(272)) into newform subspaces
Decomposition of S4old(Γ0(272)) into lower level spaces