Properties

Label 272.4.bf
Level $272$
Weight $4$
Character orbit 272.bf
Rep. character $\chi_{272}(31,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $216$
Sturm bound $144$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 272.bf (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 68 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(144\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(272, [\chi])\).

Total New Old
Modular forms 912 216 696
Cusp forms 816 216 600
Eisenstein series 96 0 96

Trace form

\( 216 q - 3432 q^{53} - 2064 q^{57} + 2400 q^{61} + 1464 q^{65} + 12480 q^{69} + 888 q^{73} - 2208 q^{77} - 5520 q^{81} - 5736 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(272, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(272, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(272, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 3}\)