Properties

Label 272.4.j
Level $272$
Weight $4$
Character orbit 272.j
Rep. character $\chi_{272}(13,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $212$
Sturm bound $144$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 272.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 272 \)
Character field: \(\Q(i)\)
Sturm bound: \(144\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(272, [\chi])\).

Total New Old
Modular forms 220 220 0
Cusp forms 212 212 0
Eisenstein series 8 8 0

Trace form

\( 212 q - 4 q^{4} - 4 q^{5} + 26 q^{6} - 1836 q^{9} + 42 q^{10} - 58 q^{12} - 4 q^{13} + 136 q^{14} - 268 q^{16} - 4 q^{17} - 36 q^{18} - 90 q^{20} - 4 q^{21} - 238 q^{22} - 246 q^{24} + 4900 q^{25} + 500 q^{26}+ \cdots + 6080 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(272, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.