Properties

Label 272.4.v
Level $272$
Weight $4$
Character orbit 272.v
Rep. character $\chi_{272}(49,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $104$
Sturm bound $144$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 272.v (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Sturm bound: \(144\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(272, [\chi])\).

Total New Old
Modular forms 456 112 344
Cusp forms 408 104 304
Eisenstein series 48 8 40

Trace form

\( 104 q + 4 q^{3} - 4 q^{5} + 4 q^{7} + 36 q^{9} + 4 q^{11} + 4 q^{15} - 4 q^{17} + 52 q^{19} + 4 q^{23} + 40 q^{25} + 4 q^{27} - 288 q^{29} + 4 q^{31} - 8 q^{33} - 1672 q^{35} - 4 q^{37} - 104 q^{39} + 232 q^{41}+ \cdots + 7648 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(272, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(272, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(272, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 2}\)