Defining parameters
Level: | \( N \) | \(=\) | \( 272 = 2^{4} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 272.v (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Sturm bound: | \(144\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(272, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 456 | 112 | 344 |
Cusp forms | 408 | 104 | 304 |
Eisenstein series | 48 | 8 | 40 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(272, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(272, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(272, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 2}\)