Properties

Label 273.2.a
Level 273273
Weight 22
Character orbit 273.a
Rep. character χ273(1,)\chi_{273}(1,\cdot)
Character field Q\Q
Dimension 1111
Newform subspaces 55
Sturm bound 7474
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 273=3713 273 = 3 \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 273.a (trivial)
Character field: Q\Q
Newform subspaces: 5 5
Sturm bound: 7474
Trace bound: 22
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(273))M_{2}(\Gamma_0(273)).

Total New Old
Modular forms 40 11 29
Cusp forms 33 11 22
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

33771313FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++++443311443311000000
++++--550055440044110011
++-++-552233442222110011
++--++441133331122110011
-++++-661155551144110011
-++-++550055440044110011
--++++550055440044110011
----664422554411110011
Plus space++18184414141515441111330033
Minus space-22227715151818771111440044

Trace form

11q+q2q3+17q46q5+5q6+3q73q8+11q92q104q11+q12q13+q14+2q15+25q1610q17+q18+4q1942q20+4q99+O(q100) 11 q + q^{2} - q^{3} + 17 q^{4} - 6 q^{5} + 5 q^{6} + 3 q^{7} - 3 q^{8} + 11 q^{9} - 2 q^{10} - 4 q^{11} + q^{12} - q^{13} + q^{14} + 2 q^{15} + 25 q^{16} - 10 q^{17} + q^{18} + 4 q^{19} - 42 q^{20}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(273))S_{2}^{\mathrm{new}}(\Gamma_0(273)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 3 7 13
273.2.a.a 273.a 1.a 11 2.1802.180 Q\Q None 273.2.a.a 2-2 1-1 1-1 11 ++ - - SU(2)\mathrm{SU}(2) q2q2q3+2q4q5+2q6+q7+q-2q^{2}-q^{3}+2q^{4}-q^{5}+2q^{6}+q^{7}+\cdots
273.2.a.b 273.a 1.a 11 2.1802.180 Q\Q None 273.2.a.b 22 11 11 1-1 - ++ ++ SU(2)\mathrm{SU}(2) q+2q2+q3+2q4+q5+2q6q7+q+2q^{2}+q^{3}+2q^{4}+q^{5}+2q^{6}-q^{7}+\cdots
273.2.a.c 273.a 1.a 22 2.1802.180 Q(2)\Q(\sqrt{2}) None 273.2.a.c 22 2-2 00 22 ++ - ++ SU(2)\mathrm{SU}(2) q+(1+β)q2q3+(1+2β)q4+(1+)q6+q+(1+\beta )q^{2}-q^{3}+(1+2\beta )q^{4}+(-1+\cdots)q^{6}+\cdots
273.2.a.d 273.a 1.a 33 2.1802.180 3.3.316.1 None 273.2.a.d 2-2 3-3 3-3 3-3 ++ ++ ++ SU(2)\mathrm{SU}(2) q+(1+β1)q2q3+(22β1+β2)q4+q+(-1+\beta _{1})q^{2}-q^{3}+(2-2\beta _{1}+\beta _{2})q^{4}+\cdots
273.2.a.e 273.a 1.a 44 2.1802.180 4.4.17428.1 None 273.2.a.e 11 44 3-3 44 - - - SU(2)\mathrm{SU}(2) q+β1q2+q3+(2+β2)q4+(1β2+)q5+q+\beta _{1}q^{2}+q^{3}+(2+\beta _{2})q^{4}+(-1-\beta _{2}+\cdots)q^{5}+\cdots

Decomposition of S2old(Γ0(273))S_{2}^{\mathrm{old}}(\Gamma_0(273)) into lower level spaces

S2old(Γ0(273)) S_{2}^{\mathrm{old}}(\Gamma_0(273)) \simeq S2new(Γ0(21))S_{2}^{\mathrm{new}}(\Gamma_0(21))2^{\oplus 2}\oplusS2new(Γ0(39))S_{2}^{\mathrm{new}}(\Gamma_0(39))2^{\oplus 2}\oplusS2new(Γ0(91))S_{2}^{\mathrm{new}}(\Gamma_0(91))2^{\oplus 2}