Defining parameters
Level: | \( N \) | \(=\) | \( 273 = 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 273.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(74\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(273))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 40 | 11 | 29 |
Cusp forms | 33 | 11 | 22 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | \(13\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(3\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(4\) |
Plus space | \(+\) | \(4\) | ||
Minus space | \(-\) | \(7\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(273))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 7 | 13 | |||||||
273.2.a.a | $1$ | $2.180$ | \(\Q\) | None | \(-2\) | \(-1\) | \(-1\) | \(1\) | $+$ | $-$ | $-$ | \(q-2q^{2}-q^{3}+2q^{4}-q^{5}+2q^{6}+q^{7}+\cdots\) | |
273.2.a.b | $1$ | $2.180$ | \(\Q\) | None | \(2\) | \(1\) | \(1\) | \(-1\) | $-$ | $+$ | $+$ | \(q+2q^{2}+q^{3}+2q^{4}+q^{5}+2q^{6}-q^{7}+\cdots\) | |
273.2.a.c | $2$ | $2.180$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(-2\) | \(0\) | \(2\) | $+$ | $-$ | $+$ | \(q+(1+\beta )q^{2}-q^{3}+(1+2\beta )q^{4}+(-1+\cdots)q^{6}+\cdots\) | |
273.2.a.d | $3$ | $2.180$ | 3.3.316.1 | None | \(-2\) | \(-3\) | \(-3\) | \(-3\) | $+$ | $+$ | $+$ | \(q+(-1+\beta _{1})q^{2}-q^{3}+(2-2\beta _{1}+\beta _{2})q^{4}+\cdots\) | |
273.2.a.e | $4$ | $2.180$ | 4.4.17428.1 | None | \(1\) | \(4\) | \(-3\) | \(4\) | $-$ | $-$ | $-$ | \(q+\beta _{1}q^{2}+q^{3}+(2+\beta _{2})q^{4}+(-1-\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(273))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(273)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 2}\)