Properties

Label 273.2.a
Level $273$
Weight $2$
Character orbit 273.a
Rep. character $\chi_{273}(1,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $5$
Sturm bound $74$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(74\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(273))\).

Total New Old
Modular forms 40 11 29
Cusp forms 33 11 22
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(4\)
Plus space\(+\)\(4\)
Minus space\(-\)\(7\)

Trace form

\( 11 q + q^{2} - q^{3} + 17 q^{4} - 6 q^{5} + 5 q^{6} + 3 q^{7} - 3 q^{8} + 11 q^{9} - 2 q^{10} - 4 q^{11} + q^{12} - q^{13} + q^{14} + 2 q^{15} + 25 q^{16} - 10 q^{17} + q^{18} + 4 q^{19} - 42 q^{20}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(273))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7 13
273.2.a.a 273.a 1.a $1$ $2.180$ \(\Q\) None 273.2.a.a \(-2\) \(-1\) \(-1\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-q^{3}+2q^{4}-q^{5}+2q^{6}+q^{7}+\cdots\)
273.2.a.b 273.a 1.a $1$ $2.180$ \(\Q\) None 273.2.a.b \(2\) \(1\) \(1\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+q^{3}+2q^{4}+q^{5}+2q^{6}-q^{7}+\cdots\)
273.2.a.c 273.a 1.a $2$ $2.180$ \(\Q(\sqrt{2}) \) None 273.2.a.c \(2\) \(-2\) \(0\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}-q^{3}+(1+2\beta )q^{4}+(-1+\cdots)q^{6}+\cdots\)
273.2.a.d 273.a 1.a $3$ $2.180$ 3.3.316.1 None 273.2.a.d \(-2\) \(-3\) \(-3\) \(-3\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}-q^{3}+(2-2\beta _{1}+\beta _{2})q^{4}+\cdots\)
273.2.a.e 273.a 1.a $4$ $2.180$ 4.4.17428.1 None 273.2.a.e \(1\) \(4\) \(-3\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(2+\beta _{2})q^{4}+(-1-\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(273))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(273)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 2}\)