Properties

Label 273.2.l
Level $273$
Weight $2$
Character orbit 273.l
Rep. character $\chi_{273}(16,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $38$
Newform subspaces $3$
Sturm bound $74$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.l (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 3 \)
Sturm bound: \(74\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(273, [\chi])\).

Total New Old
Modular forms 82 38 44
Cusp forms 66 38 28
Eisenstein series 16 0 16

Trace form

\( 38 q - 3 q^{3} + 40 q^{4} - 19 q^{9} - 8 q^{10} - 4 q^{11} - 8 q^{12} + 2 q^{13} - 16 q^{14} + 60 q^{16} - 8 q^{17} - 3 q^{19} - 8 q^{20} - 5 q^{21} - 2 q^{22} + 8 q^{23} + 12 q^{24} - 25 q^{25} + 46 q^{26}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(273, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
273.2.l.a 273.l 91.h $2$ $2.180$ \(\Q(\sqrt{-3}) \) None 273.2.j.a \(0\) \(-1\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{3}-2q^{4}+(-3+2\zeta_{6})q^{7}+(-1+\cdots)q^{9}+\cdots\)
273.2.l.b 273.l 91.h $16$ $2.180$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 273.2.j.b \(0\) \(8\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{2})q^{2}+\beta _{9}q^{3}+(1+\beta _{3}+\cdots)q^{4}+\cdots\)
273.2.l.c 273.l 91.h $20$ $2.180$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 273.2.j.c \(0\) \(-10\) \(0\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{4}q^{2}+(-1+\beta _{7})q^{3}+(2+\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(273, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(273, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)