Defining parameters
Level: | \( N \) | \(=\) | \( 273 = 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 273.l (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 91 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(74\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(273, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 82 | 38 | 44 |
Cusp forms | 66 | 38 | 28 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(273, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
273.2.l.a | $2$ | $2.180$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(0\) | \(-4\) | \(q-\zeta_{6}q^{3}-2q^{4}+(-3+2\zeta_{6})q^{7}+(-1+\cdots)q^{9}+\cdots\) |
273.2.l.b | $16$ | $2.180$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(8\) | \(0\) | \(1\) | \(q+(-\beta _{1}-\beta _{2})q^{2}+\beta _{9}q^{3}+(1+\beta _{3}+\cdots)q^{4}+\cdots\) |
273.2.l.c | $20$ | $2.180$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(0\) | \(-10\) | \(0\) | \(3\) | \(q-\beta _{4}q^{2}+(-1+\beta _{7})q^{3}+(2+\beta _{2})q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(273, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(273, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)