Properties

Label 273.2.p
Level $273$
Weight $2$
Character orbit 273.p
Rep. character $\chi_{273}(34,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $40$
Newform subspaces $6$
Sturm bound $74$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.p (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(74\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(273, [\chi])\).

Total New Old
Modular forms 80 40 40
Cusp forms 64 40 24
Eisenstein series 16 0 16

Trace form

\( 40 q + 4 q^{7} - 40 q^{9} + 16 q^{11} - 24 q^{14} - 64 q^{16} + 12 q^{21} + 16 q^{22} + 4 q^{28} + 8 q^{29} + 40 q^{32} - 16 q^{35} - 24 q^{39} - 24 q^{42} + 16 q^{44} - 8 q^{46} + 40 q^{50} - 56 q^{53}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(273, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
273.2.p.a 273.p 91.i $4$ $2.180$ \(\Q(i, \sqrt{6})\) None 273.2.p.a \(0\) \(0\) \(-8\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+\beta _{2}q^{3}+\beta _{2}q^{4}+(-2+2\beta _{2}+\cdots)q^{5}+\cdots\)
273.2.p.b 273.p 91.i $4$ $2.180$ \(\Q(i, \sqrt{10})\) None 273.2.p.b \(0\) \(0\) \(-4\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{2}q^{3}+2\beta _{2}q^{4}+(-1+\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
273.2.p.c 273.p 91.i $4$ $2.180$ \(\Q(i, \sqrt{10})\) None 273.2.p.b \(0\) \(0\) \(4\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{2}q^{3}-2\beta _{2}q^{4}+(1-\beta _{2}+\beta _{3})q^{5}+\cdots\)
273.2.p.d 273.p 91.i $4$ $2.180$ \(\Q(i, \sqrt{6})\) None 273.2.p.a \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}-\beta _{2}q^{3}+\beta _{2}q^{4}+(2-2\beta _{2}+\cdots)q^{5}+\cdots\)
273.2.p.e 273.p 91.i $12$ $2.180$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 273.2.p.e \(0\) \(0\) \(-12\) \(12\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{8}q^{2}-\beta _{4}q^{3}+(3\beta _{4}-\beta _{6}-\beta _{11})q^{4}+\cdots\)
273.2.p.f 273.p 91.i $12$ $2.180$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 273.2.p.e \(0\) \(0\) \(12\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{8}q^{2}+\beta _{4}q^{3}+(3\beta _{4}-\beta _{6}-\beta _{11})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(273, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(273, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)