Defining parameters
Level: | \( N \) | \(=\) | \( 273 = 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 273.p (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 91 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(74\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(273, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 40 | 40 |
Cusp forms | 64 | 40 | 24 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(273, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(273, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(273, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)