Properties

Label 275.2.ba
Level $275$
Weight $2$
Character orbit 275.ba
Rep. character $\chi_{275}(4,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $112$
Newform subspaces $1$
Sturm bound $60$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.ba (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 275 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(275, [\chi])\).

Total New Old
Modular forms 128 128 0
Cusp forms 112 112 0
Eisenstein series 16 16 0

Trace form

\( 112 q - 5 q^{2} - 5 q^{3} + 25 q^{4} - 2 q^{5} - 13 q^{6} + 10 q^{7} + 5 q^{8} + 25 q^{9} - 20 q^{10} - 5 q^{11} + 20 q^{12} - 5 q^{13} + q^{14} - 11 q^{15} - 17 q^{16} - 10 q^{17} + 15 q^{18} + 5 q^{19}+ \cdots + 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(275, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
275.2.ba.a 275.ba 275.aa $112$ $2.196$ None 275.2.ba.a \(-5\) \(-5\) \(-2\) \(10\) $\mathrm{SU}(2)[C_{10}]$