Defining parameters
Level: | \( N \) | \(=\) | \( 275 = 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 275.e (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(275, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 40 | 32 |
Cusp forms | 48 | 32 | 16 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(275, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
275.2.e.a | $4$ | $2.196$ | \(\Q(i, \sqrt{11})\) | \(\Q(\sqrt{-11}) \) | \(0\) | \(2\) | \(0\) | \(0\) | \(q+(\beta _{1}-\beta _{2})q^{3}-2\beta _{1}q^{4}+(-1+3\beta _{1}+\cdots)q^{9}+\cdots\) |
275.2.e.b | $4$ | $2.196$ | \(\Q(i, \sqrt{10})\) | None | \(0\) | \(4\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{3}+3\beta _{2}q^{4}+(\beta _{1}+\cdots)q^{6}+\cdots\) |
275.2.e.c | $8$ | $2.196$ | 8.0.1499238400.2 | \(\Q(\sqrt{-55}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{2}+(-2\beta _{4}-\beta _{6})q^{4}+\beta _{5}q^{7}+\cdots\) |
275.2.e.d | $16$ | $2.196$ | 16.0.\(\cdots\).2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{9}q^{2}+(-\beta _{3}-\beta _{10})q^{3}+(\beta _{4}-\beta _{7}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(275, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(275, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)