Properties

Label 2760.2.cy
Level $2760$
Weight $2$
Character orbit 2760.cy
Rep. character $\chi_{2760}(221,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $3840$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.cy (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 552 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 5840 3840 2000
Cusp forms 5680 3840 1840
Eisenstein series 160 0 160

Trace form

\( 3840 q + 4 q^{4} - 6 q^{6} - 6 q^{12} + 28 q^{16} - 6 q^{18} + 384 q^{25} - 16 q^{31} - 22 q^{34} + 34 q^{36} + 24 q^{39} + 154 q^{40} - 192 q^{46} + 46 q^{48} + 384 q^{49} - 68 q^{52} - 140 q^{58} - 8 q^{64}+ \cdots + 114 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(552, [\chi])\)\(^{\oplus 2}\)