Properties

Label 2760.2.e
Level $2760$
Weight $2$
Character orbit 2760.e
Rep. character $\chi_{2760}(2621,\cdot)$
Character field $\Q$
Dimension $384$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2760.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 552 \)
Character field: \(\Q\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).

Total New Old
Modular forms 584 384 200
Cusp forms 568 384 184
Eisenstein series 16 0 16

Trace form

\( 384 q - 4 q^{4} + 6 q^{6} + 6 q^{12} - 28 q^{16} + 6 q^{18} - 384 q^{25} + 16 q^{31} - 34 q^{36} - 24 q^{39} + 16 q^{46} - 46 q^{48} - 384 q^{49} + 68 q^{52} - 36 q^{58} + 8 q^{64} - 108 q^{72} + 42 q^{78}+ \cdots - 114 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2760, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(552, [\chi])\)\(^{\oplus 2}\)