Defining parameters
Level: | \( N \) | \(=\) | \( 2760 = 2^{3} \cdot 3 \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2760.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 552 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(1152\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2760, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 584 | 384 | 200 |
Cusp forms | 568 | 384 | 184 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2760, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2760, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2760, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(552, [\chi])\)\(^{\oplus 2}\)