Properties

Label 2775.2
Level 2775
Weight 2
Dimension 187412
Nonzero newspaces 60
Sturm bound 1094400
Trace bound 8

Downloads

Learn more

Defining parameters

Level: N N = 2775=35237 2775 = 3 \cdot 5^{2} \cdot 37
Weight: k k = 2 2
Nonzero newspaces: 60 60
Sturm bound: 10944001094400
Trace bound: 88

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(2775))M_{2}(\Gamma_1(2775)).

Total New Old
Modular forms 277632 190284 87348
Cusp forms 269569 187412 82157
Eisenstein series 8063 2872 5191

Trace form

187412q+2q2216q3418q4+12q5332q6412q7+42q8208q9508q10+8q11196q12408q13+48q14260q15690q16+4q17232q18+316q99+O(q100) 187412 q + 2 q^{2} - 216 q^{3} - 418 q^{4} + 12 q^{5} - 332 q^{6} - 412 q^{7} + 42 q^{8} - 208 q^{9} - 508 q^{10} + 8 q^{11} - 196 q^{12} - 408 q^{13} + 48 q^{14} - 260 q^{15} - 690 q^{16} + 4 q^{17} - 232 q^{18}+ \cdots - 316 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(2775))S_{2}^{\mathrm{new}}(\Gamma_1(2775))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
2775.2.a χ2775(1,)\chi_{2775}(1, \cdot) 2775.2.a.a 1 1
2775.2.a.b 1
2775.2.a.c 1
2775.2.a.d 1
2775.2.a.e 1
2775.2.a.f 1
2775.2.a.g 1
2775.2.a.h 1
2775.2.a.i 1
2775.2.a.j 1
2775.2.a.k 2
2775.2.a.l 2
2775.2.a.m 2
2775.2.a.n 2
2775.2.a.o 2
2775.2.a.p 2
2775.2.a.q 2
2775.2.a.r 3
2775.2.a.s 3
2775.2.a.t 3
2775.2.a.u 3
2775.2.a.v 3
2775.2.a.w 4
2775.2.a.x 4
2775.2.a.y 4
2775.2.a.z 5
2775.2.a.ba 5
2775.2.a.bb 5
2775.2.a.bc 5
2775.2.a.bd 5
2775.2.a.be 6
2775.2.a.bf 6
2775.2.a.bg 13
2775.2.a.bh 13
2775.2.c χ2775(1999,)\chi_{2775}(1999, \cdot) n/a 108 1
2775.2.e χ2775(2626,)\chi_{2775}(2626, \cdot) n/a 122 1
2775.2.g χ2775(1849,)\chi_{2775}(1849, \cdot) n/a 112 1
2775.2.i χ2775(676,)\chi_{2775}(676, \cdot) n/a 240 2
2775.2.j χ2775(43,)\chi_{2775}(43, \cdot) n/a 228 2
2775.2.m χ2775(524,)\chi_{2775}(524, \cdot) n/a 448 2
2775.2.n χ2775(332,)\chi_{2775}(332, \cdot) n/a 448 2
2775.2.o χ2775(482,)\chi_{2775}(482, \cdot) n/a 432 2
2775.2.s χ2775(401,)\chi_{2775}(401, \cdot) n/a 468 2
2775.2.t χ2775(1918,)\chi_{2775}(1918, \cdot) n/a 228 2
2775.2.v χ2775(556,)\chi_{2775}(556, \cdot) n/a 720 4
2775.2.y χ2775(1174,)\chi_{2775}(1174, \cdot) n/a 224 2
2775.2.ba χ2775(751,)\chi_{2775}(751, \cdot) n/a 244 2
2775.2.bc χ2775(1099,)\chi_{2775}(1099, \cdot) n/a 232 2
2775.2.bd χ2775(451,)\chi_{2775}(451, \cdot) n/a 714 6
2775.2.be χ2775(184,)\chi_{2775}(184, \cdot) n/a 768 4
2775.2.bh χ2775(334,)\chi_{2775}(334, \cdot) n/a 720 4
2775.2.bj χ2775(406,)\chi_{2775}(406, \cdot) n/a 752 4
2775.2.bl χ2775(82,)\chi_{2775}(82, \cdot) n/a 456 4
2775.2.bo χ2775(251,)\chi_{2775}(251, \cdot) n/a 936 4
2775.2.bp χ2775(1232,)\chi_{2775}(1232, \cdot) n/a 896 4
2775.2.bq χ2775(1157,)\chi_{2775}(1157, \cdot) n/a 896 4
2775.2.bu χ2775(674,)\chi_{2775}(674, \cdot) n/a 896 4
2775.2.bv χ2775(193,)\chi_{2775}(193, \cdot) n/a 456 4
2775.2.bx χ2775(121,)\chi_{2775}(121, \cdot) n/a 1536 8
2775.2.by χ2775(724,)\chi_{2775}(724, \cdot) n/a 672 6
2775.2.cb χ2775(49,)\chi_{2775}(49, \cdot) n/a 696 6
2775.2.cc χ2775(151,)\chi_{2775}(151, \cdot) n/a 726 6
2775.2.cg χ2775(253,)\chi_{2775}(253, \cdot) n/a 1520 8
2775.2.ch χ2775(179,)\chi_{2775}(179, \cdot) n/a 3008 8
2775.2.cl χ2775(38,)\chi_{2775}(38, \cdot) n/a 2880 8
2775.2.cm χ2775(887,)\chi_{2775}(887, \cdot) n/a 3008 8
2775.2.cn χ2775(191,)\chi_{2775}(191, \cdot) n/a 3008 8
2775.2.cq χ2775(142,)\chi_{2775}(142, \cdot) n/a 1520 8
2775.2.cr χ2775(196,)\chi_{2775}(196, \cdot) n/a 1504 8
2775.2.ct χ2775(454,)\chi_{2775}(454, \cdot) n/a 1504 8
2775.2.cw χ2775(64,)\chi_{2775}(64, \cdot) n/a 1536 8
2775.2.cz χ2775(457,)\chi_{2775}(457, \cdot) n/a 1368 12
2775.2.db χ2775(476,)\chi_{2775}(476, \cdot) n/a 2820 12
2775.2.dc χ2775(224,)\chi_{2775}(224, \cdot) n/a 2688 12
2775.2.de χ2775(107,)\chi_{2775}(107, \cdot) n/a 2688 12
2775.2.dh χ2775(632,)\chi_{2775}(632, \cdot) n/a 2688 12
2775.2.dj χ2775(568,)\chi_{2775}(568, \cdot) n/a 1368 12
2775.2.dk χ2775(16,)\chi_{2775}(16, \cdot) n/a 4608 24
2775.2.dm χ2775(208,)\chi_{2775}(208, \cdot) n/a 3040 16
2775.2.dn χ2775(236,)\chi_{2775}(236, \cdot) n/a 6016 16
2775.2.dr χ2775(47,)\chi_{2775}(47, \cdot) n/a 6016 16
2775.2.ds χ2775(122,)\chi_{2775}(122, \cdot) n/a 6016 16
2775.2.dt χ2775(14,)\chi_{2775}(14, \cdot) n/a 6016 16
2775.2.dw χ2775(88,)\chi_{2775}(88, \cdot) n/a 3040 16
2775.2.dz χ2775(136,)\chi_{2775}(136, \cdot) n/a 4512 24
2775.2.ea χ2775(34,)\chi_{2775}(34, \cdot) n/a 4512 24
2775.2.ed χ2775(4,)\chi_{2775}(4, \cdot) n/a 4608 24
2775.2.ee χ2775(13,)\chi_{2775}(13, \cdot) n/a 9120 48
2775.2.eg χ2775(62,)\chi_{2775}(62, \cdot) n/a 18048 48
2775.2.ej χ2775(53,)\chi_{2775}(53, \cdot) n/a 18048 48
2775.2.el χ2775(59,)\chi_{2775}(59, \cdot) n/a 18048 48
2775.2.em χ2775(56,)\chi_{2775}(56, \cdot) n/a 18048 48
2775.2.eo χ2775(22,)\chi_{2775}(22, \cdot) n/a 9120 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(2775))S_{2}^{\mathrm{old}}(\Gamma_1(2775)) into lower level spaces