Properties

Label 2793.1
Level 2793
Weight 1
Dimension 298
Nonzero newspaces 19
Newform subspaces 35
Sturm bound 564480
Trace bound 43

Downloads

Learn more

Defining parameters

Level: N N = 2793=37219 2793 = 3 \cdot 7^{2} \cdot 19
Weight: k k = 1 1
Nonzero newspaces: 19 19
Newform subspaces: 35 35
Sturm bound: 564480564480
Trace bound: 4343

Dimensions

The following table gives the dimensions of various subspaces of M1(Γ1(2793))M_{1}(\Gamma_1(2793)).

Total New Old
Modular forms 4804 1946 2858
Cusp forms 484 298 186
Eisenstein series 4320 1648 2672

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 282 16 0 0

Trace form

298q+3q3q44q6+2q7+q9+2q10+6q12+13q13+8q15+9q16+8q19+2q21+8q22+2q24q25+6q27+2q28+8q30+10q31++10q97+O(q100) 298 q + 3 q^{3} - q^{4} - 4 q^{6} + 2 q^{7} + q^{9} + 2 q^{10} + 6 q^{12} + 13 q^{13} + 8 q^{15} + 9 q^{16} + 8 q^{19} + 2 q^{21} + 8 q^{22} + 2 q^{24} - q^{25} + 6 q^{27} + 2 q^{28} + 8 q^{30} + 10 q^{31}+ \cdots + 10 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(Γ1(2793))S_{1}^{\mathrm{new}}(\Gamma_1(2793))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
2793.1.b χ2793(932,)\chi_{2793}(932, \cdot) None 0 1
2793.1.e χ2793(1177,)\chi_{2793}(1177, \cdot) None 0 1
2793.1.g χ2793(685,)\chi_{2793}(685, \cdot) None 0 1
2793.1.h χ2793(2792,)\chi_{2793}(2792, \cdot) None 0 1
2793.1.n χ2793(410,)\chi_{2793}(410, \cdot) 2793.1.n.a 2 2
2793.1.n.b 2
2793.1.n.c 4
2793.1.o χ2793(373,)\chi_{2793}(373, \cdot) None 0 2
2793.1.q χ2793(293,)\chi_{2793}(293, \cdot) None 0 2
2793.1.r χ2793(962,)\chi_{2793}(962, \cdot) 2793.1.r.a 2 2
2793.1.r.b 2
2793.1.s χ2793(227,)\chi_{2793}(227, \cdot) 2793.1.s.a 2 2
2793.1.s.b 2
2793.1.s.c 4
2793.1.s.d 4
2793.1.u χ2793(913,)\chi_{2793}(913, \cdot) None 0 2
2793.1.v χ2793(178,)\chi_{2793}(178, \cdot) None 0 2
2793.1.y χ2793(391,)\chi_{2793}(391, \cdot) None 0 2
2793.1.ba χ2793(949,)\chi_{2793}(949, \cdot) None 0 2
2793.1.bb χ2793(1684,)\chi_{2793}(1684, \cdot) None 0 2
2793.1.be χ2793(1471,)\chi_{2793}(1471, \cdot) None 0 2
2793.1.bf χ2793(197,)\chi_{2793}(197, \cdot) 2793.1.bf.a 2 2
2793.1.bf.b 4
2793.1.bf.c 4
2793.1.bi χ2793(1892,)\chi_{2793}(1892, \cdot) 2793.1.bi.a 2 2
2793.1.bi.b 2
2793.1.bi.c 4
2793.1.bj χ2793(704,)\chi_{2793}(704, \cdot) None 0 2
2793.1.bl χ2793(619,)\chi_{2793}(619, \cdot) None 0 2
2793.1.bn χ2793(521,)\chi_{2793}(521, \cdot) 2793.1.bn.a 2 2
2793.1.bn.b 2
2793.1.bs χ2793(398,)\chi_{2793}(398, \cdot) 2793.1.bs.a 6 6
2793.1.bs.b 6
2793.1.bt χ2793(286,)\chi_{2793}(286, \cdot) None 0 6
2793.1.bv χ2793(379,)\chi_{2793}(379, \cdot) None 0 6
2793.1.by χ2793(134,)\chi_{2793}(134, \cdot) None 0 6
2793.1.ca χ2793(374,)\chi_{2793}(374, \cdot) 2793.1.ca.a 6 6
2793.1.cb χ2793(313,)\chi_{2793}(313, \cdot) None 0 6
2793.1.cc χ2793(244,)\chi_{2793}(244, \cdot) None 0 6
2793.1.cf χ2793(146,)\chi_{2793}(146, \cdot) 2793.1.cf.a 6 6
2793.1.cf.b 6
2793.1.cg χ2793(509,)\chi_{2793}(509, \cdot) 2793.1.cg.a 6 6
2793.1.ch χ2793(766,)\chi_{2793}(766, \cdot) None 0 6
2793.1.ci χ2793(557,)\chi_{2793}(557, \cdot) 2793.1.ci.a 6 6
2793.1.cm χ2793(508,)\chi_{2793}(508, \cdot) None 0 6
2793.1.cn χ2793(148,)\chi_{2793}(148, \cdot) None 0 6
2793.1.co χ2793(491,)\chi_{2793}(491, \cdot) 2793.1.co.a 6 6
2793.1.co.b 6
2793.1.cp χ2793(263,)\chi_{2793}(263, \cdot) 2793.1.cp.a 6 6
2793.1.ct χ2793(67,)\chi_{2793}(67, \cdot) None 0 6
2793.1.cy χ2793(122,)\chi_{2793}(122, \cdot) None 0 12
2793.1.da χ2793(220,)\chi_{2793}(220, \cdot) None 0 12
2793.1.dc χ2793(191,)\chi_{2793}(191, \cdot) None 0 12
2793.1.dd χ2793(296,)\chi_{2793}(296, \cdot) None 0 12
2793.1.dg χ2793(239,)\chi_{2793}(239, \cdot) 2793.1.dg.a 12 12
2793.1.dg.b 12
2793.1.dh χ2793(274,)\chi_{2793}(274, \cdot) None 0 12
2793.1.dk χ2793(88,)\chi_{2793}(88, \cdot) None 0 12
2793.1.dl χ2793(37,)\chi_{2793}(37, \cdot) None 0 12
2793.1.dn χ2793(349,)\chi_{2793}(349, \cdot) None 0 12
2793.1.dq χ2793(334,)\chi_{2793}(334, \cdot) None 0 12
2793.1.dr χ2793(115,)\chi_{2793}(115, \cdot) None 0 12
2793.1.dt χ2793(341,)\chi_{2793}(341, \cdot) None 0 12
2793.1.du χ2793(164,)\chi_{2793}(164, \cdot) None 0 12
2793.1.dv χ2793(335,)\chi_{2793}(335, \cdot) 2793.1.dv.a 12 12
2793.1.dv.b 12
2793.1.dx χ2793(46,)\chi_{2793}(46, \cdot) None 0 12
2793.1.dy χ2793(11,)\chi_{2793}(11, \cdot) None 0 12
2793.1.ed χ2793(268,)\chi_{2793}(268, \cdot) None 0 36
2793.1.eh χ2793(92,)\chi_{2793}(92, \cdot) None 0 36
2793.1.ei χ2793(23,)\chi_{2793}(23, \cdot) 2793.1.ei.a 36 36
2793.1.ej χ2793(109,)\chi_{2793}(109, \cdot) None 0 36
2793.1.ek χ2793(22,)\chi_{2793}(22, \cdot) None 0 36
2793.1.eo χ2793(137,)\chi_{2793}(137, \cdot) 2793.1.eo.a 36 36
2793.1.ep χ2793(187,)\chi_{2793}(187, \cdot) None 0 36
2793.1.eq χ2793(41,)\chi_{2793}(41, \cdot) None 0 36
2793.1.er χ2793(59,)\chi_{2793}(59, \cdot) 2793.1.er.a 36 36
2793.1.eu χ2793(61,)\chi_{2793}(61, \cdot) None 0 36
2793.1.ev χ2793(55,)\chi_{2793}(55, \cdot) None 0 36
2793.1.ew χ2793(143,)\chi_{2793}(143, \cdot) 2793.1.ew.a 36 36

Decomposition of S1old(Γ1(2793))S_{1}^{\mathrm{old}}(\Gamma_1(2793)) into lower level spaces