Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(2793))\).
|
Total |
New |
Old |
Modular forms
| 4804 |
1946 |
2858 |
Cusp forms
| 484 |
298 |
186 |
Eisenstein series
| 4320 |
1648 |
2672 |
The following table gives the dimensions of subspaces with specified projective image type.
Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(2793))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label |
\(\chi\) |
Newforms |
Dimension |
\(\chi\) degree |
2793.1.b |
\(\chi_{2793}(932, \cdot)\) |
None |
0 |
1 |
2793.1.e |
\(\chi_{2793}(1177, \cdot)\) |
None |
0 |
1 |
2793.1.g |
\(\chi_{2793}(685, \cdot)\) |
None |
0 |
1 |
2793.1.h |
\(\chi_{2793}(2792, \cdot)\) |
None |
0 |
1 |
2793.1.n |
\(\chi_{2793}(410, \cdot)\) |
2793.1.n.a |
2 |
2 |
2793.1.n.b |
2 |
2793.1.n.c |
4 |
2793.1.o |
\(\chi_{2793}(373, \cdot)\) |
None |
0 |
2 |
2793.1.q |
\(\chi_{2793}(293, \cdot)\) |
None |
0 |
2 |
2793.1.r |
\(\chi_{2793}(962, \cdot)\) |
2793.1.r.a |
2 |
2 |
2793.1.r.b |
2 |
2793.1.s |
\(\chi_{2793}(227, \cdot)\) |
2793.1.s.a |
2 |
2 |
2793.1.s.b |
2 |
2793.1.s.c |
4 |
2793.1.s.d |
4 |
2793.1.u |
\(\chi_{2793}(913, \cdot)\) |
None |
0 |
2 |
2793.1.v |
\(\chi_{2793}(178, \cdot)\) |
None |
0 |
2 |
2793.1.y |
\(\chi_{2793}(391, \cdot)\) |
None |
0 |
2 |
2793.1.ba |
\(\chi_{2793}(949, \cdot)\) |
None |
0 |
2 |
2793.1.bb |
\(\chi_{2793}(1684, \cdot)\) |
None |
0 |
2 |
2793.1.be |
\(\chi_{2793}(1471, \cdot)\) |
None |
0 |
2 |
2793.1.bf |
\(\chi_{2793}(197, \cdot)\) |
2793.1.bf.a |
2 |
2 |
2793.1.bf.b |
4 |
2793.1.bf.c |
4 |
2793.1.bi |
\(\chi_{2793}(1892, \cdot)\) |
2793.1.bi.a |
2 |
2 |
2793.1.bi.b |
2 |
2793.1.bi.c |
4 |
2793.1.bj |
\(\chi_{2793}(704, \cdot)\) |
None |
0 |
2 |
2793.1.bl |
\(\chi_{2793}(619, \cdot)\) |
None |
0 |
2 |
2793.1.bn |
\(\chi_{2793}(521, \cdot)\) |
2793.1.bn.a |
2 |
2 |
2793.1.bn.b |
2 |
2793.1.bs |
\(\chi_{2793}(398, \cdot)\) |
2793.1.bs.a |
6 |
6 |
2793.1.bs.b |
6 |
2793.1.bt |
\(\chi_{2793}(286, \cdot)\) |
None |
0 |
6 |
2793.1.bv |
\(\chi_{2793}(379, \cdot)\) |
None |
0 |
6 |
2793.1.by |
\(\chi_{2793}(134, \cdot)\) |
None |
0 |
6 |
2793.1.ca |
\(\chi_{2793}(374, \cdot)\) |
2793.1.ca.a |
6 |
6 |
2793.1.cb |
\(\chi_{2793}(313, \cdot)\) |
None |
0 |
6 |
2793.1.cc |
\(\chi_{2793}(244, \cdot)\) |
None |
0 |
6 |
2793.1.cf |
\(\chi_{2793}(146, \cdot)\) |
2793.1.cf.a |
6 |
6 |
2793.1.cf.b |
6 |
2793.1.cg |
\(\chi_{2793}(509, \cdot)\) |
2793.1.cg.a |
6 |
6 |
2793.1.ch |
\(\chi_{2793}(766, \cdot)\) |
None |
0 |
6 |
2793.1.ci |
\(\chi_{2793}(557, \cdot)\) |
2793.1.ci.a |
6 |
6 |
2793.1.cm |
\(\chi_{2793}(508, \cdot)\) |
None |
0 |
6 |
2793.1.cn |
\(\chi_{2793}(148, \cdot)\) |
None |
0 |
6 |
2793.1.co |
\(\chi_{2793}(491, \cdot)\) |
2793.1.co.a |
6 |
6 |
2793.1.co.b |
6 |
2793.1.cp |
\(\chi_{2793}(263, \cdot)\) |
2793.1.cp.a |
6 |
6 |
2793.1.ct |
\(\chi_{2793}(67, \cdot)\) |
None |
0 |
6 |
2793.1.cy |
\(\chi_{2793}(122, \cdot)\) |
None |
0 |
12 |
2793.1.da |
\(\chi_{2793}(220, \cdot)\) |
None |
0 |
12 |
2793.1.dc |
\(\chi_{2793}(191, \cdot)\) |
None |
0 |
12 |
2793.1.dd |
\(\chi_{2793}(296, \cdot)\) |
None |
0 |
12 |
2793.1.dg |
\(\chi_{2793}(239, \cdot)\) |
2793.1.dg.a |
12 |
12 |
2793.1.dg.b |
12 |
2793.1.dh |
\(\chi_{2793}(274, \cdot)\) |
None |
0 |
12 |
2793.1.dk |
\(\chi_{2793}(88, \cdot)\) |
None |
0 |
12 |
2793.1.dl |
\(\chi_{2793}(37, \cdot)\) |
None |
0 |
12 |
2793.1.dn |
\(\chi_{2793}(349, \cdot)\) |
None |
0 |
12 |
2793.1.dq |
\(\chi_{2793}(334, \cdot)\) |
None |
0 |
12 |
2793.1.dr |
\(\chi_{2793}(115, \cdot)\) |
None |
0 |
12 |
2793.1.dt |
\(\chi_{2793}(341, \cdot)\) |
None |
0 |
12 |
2793.1.du |
\(\chi_{2793}(164, \cdot)\) |
None |
0 |
12 |
2793.1.dv |
\(\chi_{2793}(335, \cdot)\) |
2793.1.dv.a |
12 |
12 |
2793.1.dv.b |
12 |
2793.1.dx |
\(\chi_{2793}(46, \cdot)\) |
None |
0 |
12 |
2793.1.dy |
\(\chi_{2793}(11, \cdot)\) |
None |
0 |
12 |
2793.1.ed |
\(\chi_{2793}(268, \cdot)\) |
None |
0 |
36 |
2793.1.eh |
\(\chi_{2793}(92, \cdot)\) |
None |
0 |
36 |
2793.1.ei |
\(\chi_{2793}(23, \cdot)\) |
2793.1.ei.a |
36 |
36 |
2793.1.ej |
\(\chi_{2793}(109, \cdot)\) |
None |
0 |
36 |
2793.1.ek |
\(\chi_{2793}(22, \cdot)\) |
None |
0 |
36 |
2793.1.eo |
\(\chi_{2793}(137, \cdot)\) |
2793.1.eo.a |
36 |
36 |
2793.1.ep |
\(\chi_{2793}(187, \cdot)\) |
None |
0 |
36 |
2793.1.eq |
\(\chi_{2793}(41, \cdot)\) |
None |
0 |
36 |
2793.1.er |
\(\chi_{2793}(59, \cdot)\) |
2793.1.er.a |
36 |
36 |
2793.1.eu |
\(\chi_{2793}(61, \cdot)\) |
None |
0 |
36 |
2793.1.ev |
\(\chi_{2793}(55, \cdot)\) |
None |
0 |
36 |
2793.1.ew |
\(\chi_{2793}(143, \cdot)\) |
2793.1.ew.a |
36 |
36 |