Defining parameters
Level: | \( N \) | \(=\) | \( 28 = 2^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 28.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(28))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 23 | 2 | 21 |
Cusp forms | 17 | 2 | 15 |
Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(1\) | |
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(28))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | |||||||
28.6.a.a | $1$ | $4.491$ | \(\Q\) | None | \(0\) | \(-2\) | \(-96\) | \(49\) | $-$ | $-$ | \(q-2q^{3}-96q^{5}+7^{2}q^{7}-239q^{9}+\cdots\) | |
28.6.a.b | $1$ | $4.491$ | \(\Q\) | None | \(0\) | \(26\) | \(16\) | \(-49\) | $-$ | $+$ | \(q+26q^{3}+2^{4}q^{5}-7^{2}q^{7}+433q^{9}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(28))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(28)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)