Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M6(Γ0(28)).
|
Total |
New |
Old |
Modular forms
| 23 |
2 |
21 |
Cusp forms
| 17 |
2 |
15 |
Eisenstein series
| 6 |
0 |
6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 7 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 5 | 0 | 5 | | 3 | 0 | 3 | | 2 | 0 | 2 |
+ | − | − | | 7 | 0 | 7 | | 5 | 0 | 5 | | 2 | 0 | 2 |
− | + | − | | 5 | 1 | 4 | | 4 | 1 | 3 | | 1 | 0 | 1 |
− | − | + | | 6 | 1 | 5 | | 5 | 1 | 4 | | 1 | 0 | 1 |
Plus space | + | | 11 | 1 | 10 | | 8 | 1 | 7 | | 3 | 0 | 3 |
Minus space | − | | 12 | 1 | 11 | | 9 | 1 | 8 | | 3 | 0 | 3 |
Decomposition of S6new(Γ0(28)) into newform subspaces
Decomposition of S6old(Γ0(28)) into lower level spaces