Properties

Label 28.6.a
Level $28$
Weight $6$
Character orbit 28.a
Rep. character $\chi_{28}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $24$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 28.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(28))\).

Total New Old
Modular forms 23 2 21
Cusp forms 17 2 15
Eisenstein series 6 0 6

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)FrickeDim
\(-\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(1\)
Minus space\(-\)\(1\)

Trace form

\( 2 q + 24 q^{3} - 80 q^{5} + 194 q^{9} - 712 q^{11} + 1256 q^{13} + 608 q^{15} - 964 q^{17} - 2792 q^{19} - 1372 q^{21} + 3440 q^{23} + 3222 q^{25} + 5904 q^{27} - 7628 q^{29} - 1456 q^{31} + 1648 q^{33}+ \cdots + 175544 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(28))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7
28.6.a.a 28.a 1.a $1$ $4.491$ \(\Q\) None 28.6.a.a \(0\) \(-2\) \(-96\) \(49\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}-96q^{5}+7^{2}q^{7}-239q^{9}+\cdots\)
28.6.a.b 28.a 1.a $1$ $4.491$ \(\Q\) None 28.6.a.b \(0\) \(26\) \(16\) \(-49\) $-$ $+$ $\mathrm{SU}(2)$ \(q+26q^{3}+2^{4}q^{5}-7^{2}q^{7}+433q^{9}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(28))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(28)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)