Properties

Label 28.6.a
Level 2828
Weight 66
Character orbit 28.a
Rep. character χ28(1,)\chi_{28}(1,\cdot)
Character field Q\Q
Dimension 22
Newform subspaces 22
Sturm bound 2424
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 28=227 28 = 2^{2} \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 28.a (trivial)
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 2424
Trace bound: 33
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ0(28))M_{6}(\Gamma_0(28)).

Total New Old
Modular forms 23 2 21
Cusp forms 17 2 15
Eisenstein series 6 0 6

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

2277FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++550055330033220022
++--770077550055220022
-++-551144441133110011
--++661155551144110011
Plus space++1111111010881177330033
Minus space-1212111111991188330033

Trace form

2q+24q380q5+194q9712q11+1256q13+608q15964q172792q191372q21+3440q23+3222q25+5904q277628q291456q31+1648q33++175544q99+O(q100) 2 q + 24 q^{3} - 80 q^{5} + 194 q^{9} - 712 q^{11} + 1256 q^{13} + 608 q^{15} - 964 q^{17} - 2792 q^{19} - 1372 q^{21} + 3440 q^{23} + 3222 q^{25} + 5904 q^{27} - 7628 q^{29} - 1456 q^{31} + 1648 q^{33}+ \cdots + 175544 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ0(28))S_{6}^{\mathrm{new}}(\Gamma_0(28)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 7
28.6.a.a 28.a 1.a 11 4.4914.491 Q\Q None 28.6.a.a 00 2-2 96-96 4949 - - SU(2)\mathrm{SU}(2) q2q396q5+72q7239q9+q-2q^{3}-96q^{5}+7^{2}q^{7}-239q^{9}+\cdots
28.6.a.b 28.a 1.a 11 4.4914.491 Q\Q None 28.6.a.b 00 2626 1616 49-49 - ++ SU(2)\mathrm{SU}(2) q+26q3+24q572q7+433q9+q+26q^{3}+2^{4}q^{5}-7^{2}q^{7}+433q^{9}+\cdots

Decomposition of S6old(Γ0(28))S_{6}^{\mathrm{old}}(\Gamma_0(28)) into lower level spaces

S6old(Γ0(28)) S_{6}^{\mathrm{old}}(\Gamma_0(28)) \simeq S6new(Γ0(4))S_{6}^{\mathrm{new}}(\Gamma_0(4))2^{\oplus 2}\oplusS6new(Γ0(7))S_{6}^{\mathrm{new}}(\Gamma_0(7))3^{\oplus 3}\oplusS6new(Γ0(14))S_{6}^{\mathrm{new}}(\Gamma_0(14))2^{\oplus 2}