Defining parameters
Level: | \( N \) | \(=\) | \( 280 = 2^{3} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 280.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 56 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(280, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 52 | 32 | 20 |
Cusp forms | 44 | 32 | 12 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(280, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
280.2.h.a | $16$ | $2.236$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(1\) | \(0\) | \(-16\) | \(0\) | \(q+\beta _{5}q^{2}+\beta _{4}q^{3}+\beta _{9}q^{4}-q^{5}+\beta _{6}q^{6}+\cdots\) |
280.2.h.b | $16$ | $2.236$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(1\) | \(0\) | \(16\) | \(0\) | \(q+\beta _{5}q^{2}-\beta _{4}q^{3}+\beta _{9}q^{4}+q^{5}-\beta _{6}q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(280, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(280, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)