Defining parameters
Level: | \( N \) | \(=\) | \( 2842 = 2 \cdot 7^{2} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2842.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 29 \) | ||
Sturm bound: | \(840\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2842))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 436 | 97 | 339 |
Cusp forms | 405 | 97 | 308 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(29\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(15\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(11\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(10\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(13\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(15\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(7\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(10\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(16\) |
Plus space | \(+\) | \(45\) | ||
Minus space | \(-\) | \(52\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2842))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2842))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2842)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(203))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(406))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1421))\)\(^{\oplus 2}\)