Properties

Label 285.1.n
Level $285$
Weight $1$
Character orbit 285.n
Rep. character $\chi_{285}(239,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $2$
Sturm bound $40$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 285.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 285 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(40\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(285, [\chi])\).

Total New Old
Modular forms 12 12 0
Cusp forms 4 4 0
Eisenstein series 8 8 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q + 2 q^{6} - 2 q^{9} + O(q^{10}) \) \( 4 q + 2 q^{6} - 2 q^{9} + 2 q^{10} - 2 q^{15} + 2 q^{16} - 2 q^{19} - 2 q^{24} - 2 q^{25} - 4 q^{31} - 2 q^{34} - 2 q^{40} - 8 q^{46} + 4 q^{49} + 2 q^{51} + 2 q^{54} - 4 q^{61} + 4 q^{64} + 8 q^{69} - 4 q^{79} - 2 q^{81} + 2 q^{85} + 2 q^{90} + 4 q^{94} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(285, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
285.1.n.a 285.n 285.n $2$ $0.142$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-15}) \) None 285.1.n.a \(-1\) \(1\) \(1\) \(0\) \(q+\zeta_{6}^{2}q^{2}-\zeta_{6}^{2}q^{3}-\zeta_{6}^{2}q^{5}+\zeta_{6}q^{6}+\cdots\)
285.1.n.b 285.n 285.n $2$ $0.142$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-15}) \) None 285.1.n.a \(1\) \(-1\) \(-1\) \(0\) \(q-\zeta_{6}^{2}q^{2}+\zeta_{6}^{2}q^{3}+\zeta_{6}^{2}q^{5}+\zeta_{6}q^{6}+\cdots\)