Defining parameters
Level: | \( N \) | \(=\) | \( 285 = 3 \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 285.n (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 285 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(285, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12 | 12 | 0 |
Cusp forms | 4 | 4 | 0 |
Eisenstein series | 8 | 8 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 4 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(285, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
285.1.n.a | $2$ | $0.142$ | \(\Q(\sqrt{-3}) \) | $D_{3}$ | \(\Q(\sqrt{-15}) \) | None | \(-1\) | \(1\) | \(1\) | \(0\) | \(q+\zeta_{6}^{2}q^{2}-\zeta_{6}^{2}q^{3}-\zeta_{6}^{2}q^{5}+\zeta_{6}q^{6}+\cdots\) |
285.1.n.b | $2$ | $0.142$ | \(\Q(\sqrt{-3}) \) | $D_{3}$ | \(\Q(\sqrt{-15}) \) | None | \(1\) | \(-1\) | \(-1\) | \(0\) | \(q-\zeta_{6}^{2}q^{2}+\zeta_{6}^{2}q^{3}+\zeta_{6}^{2}q^{5}+\zeta_{6}q^{6}+\cdots\) |